Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)
A = -12 + 22 - 32 + 42 - ... - 992 + 1002
A = 1002 - 992 + ... + 42 - 32 + 22 - 12
A = (100 + 99).(100 - 99) + ... + (4 + 3).(4 - 3) + (2 + 1).(2 - 1)
A = 100 + 99 + ... + 4 + 3 + 2 + 1
\(A=\frac{\left(1+100\right).100}{2}=101.50=5050\)
\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)
2B = (3 - 1)(3 + 1)(32 + 1)(34 + 1)...(332 + 1)
2B = (32 - 1)(32 + 1)(34 + 1)...(332 + 1)
2B = (34 - 1)(34 + 1)...(332 + 1)
2B = 364 - 1
\(B=\frac{3^{64}-1}{2}\)
A = \(\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)
Xét: n4 + 4 = (n2+2)2 - 4n2 = (n2-2n+2)(n2+2n+2) = [(n-1)2+1][(x+1)2+1] nên: A = \(\dfrac{\left(0^2+1\right)\left(2^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)}.\dfrac{\left(4^2+1\right)\left(6^2+1\right)}{\left(6^2+1\right)\left(8^2+1\right)}.....\dfrac{\left(20^2+1\right)\left(22^2+1\right)}{\left(22^2+1\right)\left(24^2+1\right)}=\dfrac{1}{24^2+1}=\dfrac{1}{577}\)
B = \(\left(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{2}{n-2}+\dfrac{1}{n-1}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}\right)\)
Đặt C = \(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)
= \(\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)
= \(n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)
= \(\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}\)
= \(n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\right)\)
Vậy ...
b) -12 + 22 - 32 + 42 - ... - 992 + 1002
= (22 - 12) + (42 - 32) + ... + (1002 - 992)
= (2 + 1)(2 - 1) + (4 + 3)(4 - 3) + ... + (100 + 99)(100 - 99)
= (1 + 2) + (3 + 4) + ... + (99 + 100)
= 5050
a) (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)
= [(3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)] : 2
= [(32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)] : 2
= [(34 - 1)(34 + 1)(38 + 1)(316 + 1)] : 2
Và cứ như thế ta được kết quả là (332 - 1) : 2 = 926510094425920
b: Để N là số nguyên dương thì \(\sqrt{x}-3>0\)
\(\Leftrightarrow x>9\)
mà x là số nguyên
nên \(\left\{{}\begin{matrix}x\in Z\\x>9\end{matrix}\right.\)
a)\(T=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
ta có \(2+1=2^2-1\)
\(T=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
\(T=\left(2^4-1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
\(T=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(T=2^{32}-1\)
bạn ơi nơi chổ mấy cái \(\left(2^2-1\right)\left(2^2+1\right)\)là nhân đa thức lại nha
b)
\(U=100^2-99^2+98^2-97^2+...+4^2-3^2+2^2-1^2\)
\(U=-1^2+2^2-3^2+4^2-...-97^2+98^2-99^2+100^2\)
\(U=2^2-1^2+4^2-3^2+...+98^2-97^2+100^2-99^2\)
\(U=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)(dùng hằng đẳng thức sô 3 nha)
\(U=3+7+...+199\)
\(U=1+2+3+\text{4+...+99+100}\)
số số hạng của U là :\(\left(100-1\right):1+1=100\) (số hạng)
tổng số số hạng của U là : \(\frac{\left(100+1\right).100}{2}=5050\)
à bạn coi lại cái đề nha đoạn sau hình như thiếu 2^2 thì phải
a) \(\left(n-1\right)^2-n\left(n-2\right)=3\left(n-1\right)\)
\(\Rightarrow n^2-2n+1-n^2+2n=3n-3\)
\(\Rightarrow3n-3=1\)
\(\Rightarrow3n=4\)
\(\Rightarrow n=\dfrac{4}{3}\)
A = 1002 - 992 + 982 - 972 + . . . + 22 - 12
= (100 - 99)(100 + 99) + (98 - 97)(98 + 97) + . . . (2 - 1)(2 + 1)
= 199 + 195 + . . . + 3
= 5050
B = 3(22 + 1)(24 + 1) . . . (264 + 1) + 1
= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1)(264 + 1) + 1
= (24 - 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1) + 1
= (28 - 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1) + 1
= (216 - 1)(216 + 1)(232 + 1)(264 + 1) + 1
= (232 - 1)(232 + 1)(264 + 1) + 1
= (264 - 1)(264 + 1) + 1
= 2128 - 1 + 1
= 2128