Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(sin^210^0+sin^280^0\right)+\left(sin^220^0+sin^270^0\right)+sin^245^0\)
\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)
b: \(=\left(sin^242^0+sin^248^0\right)+\left(sin^243^0+sin^247^0\right)+...+sin^245^0\)
=1+1+1+1/2
=3,5
c: \(=tan35^0\cdot tan55^0\cdot tan40^0\cdot tan50^0\cdot tan45^0=1\)
d: \(=\left(cos^215^0+cos^275^0\right)-\left(cos^225^0+cos^265^0\right)+\left(cos^235^0+cos^255^0\right)-\dfrac{1}{2}\)
=1-1+1-1/2
=1/2
ta có : \(5tan40.tan50-cos^247-3-cos^243\)
\(=5tan40.tan\left(90-40\right)-cos^247-cos^2\left(90-47\right)-3\)
\(=5.tan40.cot40-cos^247-sin^247-3=5-1-3=1\)
\(A=sin23^0-cos67^0=cos67^0-cos67^0=0\)
Vậy ...
\(B=\dfrac{tan70^0.tan45^0.tan20^0}{cos70^0.cos45^0.cos20^0}\)
\(\Leftrightarrow B=\dfrac{tan70^0.tan45^0.tan20^0}{tan70^0.cos45^0.tan20^0}=1\)
Vậy ...
Có
A=\(\left(sin^215^o+sin^275^o\right)+\left(sin^240^o+sin^250^o\right)+\left(sin^260^o+sin^230^o\right)\)
\(=\left(sin^215^o+cos^215^o\right)+...\)
\(=1\cdot3=3\)
Câu c tương tự mà mk nghĩ đề sai dấu - trước cos^245độ
Nói chung nếu: a+b=90 độ
thì: \(sin^2a+sin^2b=1\)
b) thì áp dụng nếu a+b=90 độ:
\(tana=cotb\) và ngược lại
Mà \(tana\cdot cota=1\)
Nói chung là công thức......
a: \(\sin36^0-\cos54^0+\cos60^0\)
\(=\sin36^0-\sin36^0+\dfrac{1}{2}=\dfrac{1}{2}\)
b: \(=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^230^0+\sin^260^0\right)\)
=1+1=2
`sin36^o -cos54^o +cos60^o`
`=cos54^o -cos54^o +cos60^o`
`=cos60^o=1/2`
_____________________________________________
`sin^2 10^o +sin^2 30^o +sin^2 80^o +sin^2 60^o`
`=cos^2 80^o +cos^2 60^o +sin^2 80^o +sin^2 60^o`
`=(cos^2 80^2 +sin^2 80^o )+(cos^2 60^o +sin^2 60^o )`
`=1+1=2`
Vì sin(\(\alpha\) ) = cos (\(90-\alpha\)) nên \(sin^2\alpha=cos^2\left(90-\alpha\right)\)
a/ \(sin^230-sin^240-sin^250+sin^260=\left(cos^260+sin^260\right)-\left(cos^250+sin^250\right)=1-1=0\)
b/ \(cos^225-cos^235+cos^245-cos^255+cos^265=\left(sin^265+cos^265\right)-\left(sin^255+cos^255\right)+cos^245=1-1+cos^245=cos^245=\dfrac{1}{2}\)
a: \(=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0+\sin^260^0\right)+\left(\sin^240^0+\sin^250^0\right)\)
=1+1+1+1
=4
b: \(=\left(\cos^25^0+\cos^285^0\right)+\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)
\(=1+1+1+1+\dfrac{1}{2}=4+\dfrac{1}{2}=\dfrac{9}{2}\)
a) Ta có: \(sin\alpha=cos\left(90-\alpha\right)\Rightarrow sin42=cos48\)
\(\Rightarrow sin42-cos48=0\)
b) Ta có: \(sin\alpha=cos\left(90-\alpha\right)\Rightarrow sin61=cos29\Rightarrow sin^261=cos^229\)
\(\Rightarrow sin^261+sin^229=sin^229+cos^229=1\)
c) Ta có: \(tan\alpha=\dfrac{1}{tan\left(90-\alpha\right)}\Rightarrow tan40=\dfrac{1}{tan50}\)
\(\Rightarrow tan40.tan50=1\) mà \(tan45=1\Rightarrow tan40.tan45.tan50=1\)
\(sin42^0-cos48^0=sin42^0-sin\left(90^0-48^0\right)=sin42^0-sin42^0=0\)
\(sin^261^0+sin^229^0=sin^261^0+cos^2\left(90^0-29^0\right)=sin^261^0+cos^261^0=1\)
\(tan40^0.tan50^0.tan45^0=tan40^0.cot\left(90^0-50^0\right).1=tan40^0.cot40^0=1\)
Sử dụng các công thức:
\(cosa=sin\left(90^0-a\right)\) ; \(sina=cos\left(90^0-a\right)\) ; \(tana=cot\left(90^0-a\right)\) ; \(tana.cota=1\)