K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

a) \(\sqrt{\frac{\left(165-124\right)\left(165+124\right)}{164}}=\sqrt{\frac{41.289}{164}}=\sqrt{\frac{289}{4}}=\frac{17}{2}\)

b) tương tự ý a

c) \(\left(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\right)^2=7+4\sqrt{3}+7-4\sqrt{3}-2.\sqrt{7+4\sqrt{3}}.\sqrt{7-4\sqrt{3}}\)

\(=14-2\sqrt{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=14-2\sqrt{49-48}\)

\(=14-2.1=12\)

\(\Rightarrow\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}=\sqrt{12}=2\sqrt{3}\)

31 tháng 5 2017

a) \(\sqrt{\frac{165^2-124^2}{164}}=\sqrt{\frac{\left(165-124\right)\left(165+124\right)}{164}}=\sqrt{\frac{41.289}{164}}\)

    \(=\sqrt{\frac{11849}{164}}=\sqrt{72,25}=8,5\)

b)\(\sqrt{\frac{149^2-76^2}{457^2-384^2}}=\sqrt{\frac{\left(149-76\right)\left(149+76\right)}{\left(457-384\right)\left(457+384\right)}}\) \(=\sqrt{\frac{73.225}{73.841}}=\sqrt{\frac{225}{841}}=\sqrt{\frac{15^2}{29^2}}=\frac{15}{29}\)

c)\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\) \(=\sqrt{2^2+3+2.2.\sqrt{3}}-\sqrt{2^2+3-2.2.\sqrt{3}}\)

\(=\sqrt{2^2+2.2.\sqrt{3}+\sqrt{3}^2}-\sqrt{2^2-2.2.\sqrt{3}+\sqrt{3}^2}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}=\left(2+\sqrt{3}\right)-\left(2-\sqrt{3}\right)\) 

\(=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)

8 tháng 8 2016

1) \(\frac{\sqrt{165^2-124^2}}{164}=\frac{\sqrt{\left(165-124\right)\left(165+124\right)}}{164}=\frac{\sqrt{41}\cdot\sqrt{289}}{164}=\frac{\sqrt{41}\cdot17}{164}=\frac{17}{4\sqrt{41}}\)

2) \(\frac{\sqrt{149^2-76^2}}{\sqrt{457^2-384^2}}=\frac{\sqrt{\left(149+76\right)\left(149-76\right)}}{\sqrt{\left(457+384\right)\left(457-384\right)}}=\frac{\sqrt{225}\cdot\sqrt{73}}{\sqrt{841}\cdot\sqrt{73}}=\frac{25}{29}\)

a: \(=\sqrt{\dfrac{25}{16}\cdot\dfrac{49}{9}\cdot\dfrac{1}{100}}=\dfrac{5}{4}\cdot\dfrac{7}{3}\cdot\dfrac{1}{10}=\dfrac{35}{120}=\dfrac{7}{24}\)

b: \(=\sqrt{1.44\cdot0.81}=1.2\cdot0.9=1.08\)

c: \(=\sqrt{\dfrac{\left(165-124\right)\left(165+124\right)}{164}}=\sqrt{\dfrac{1}{4}\cdot289}=\dfrac{17}{2}\)

d: \(=\sqrt{\dfrac{\left(149-76\right)\left(149+76\right)}{\left(457-384\right)\left(457+384\right)}}=\sqrt{\dfrac{225}{841}}=\dfrac{15}{29}\)

31 tháng 3 2017

a) HD: Đổi hỗn số và số thập phân thành phân số.

ĐS: .

b) =

= = =

= .

d) ĐS: .

28 tháng 6 2019

\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{\sqrt{x}^3-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)

\(=\left(\frac{\sqrt{x}\left(x+2\sqrt{x}+4\right)}{\sqrt{x}^3-8}-\frac{\left(x-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}^3-8}-\frac{7\sqrt{x}+10}{\sqrt{x}^3-8}\right)\)\(:\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)

\(=\frac{\sqrt{x}^3+2x+4\sqrt{x}-\sqrt{x}^3+2x+3\sqrt{x}-6-7\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}.\frac{\left(x+2\sqrt{x}+4\right)}{\sqrt{x}+7}\)

\(=\)\(\frac{\left(4x-16\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}=\frac{4\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)

Sai đề không ?

A= \(\left(\frac{\sqrt{x}\left(x+2\sqrt{x}+4\right)-\left(x-3\right)\left(\sqrt{x}-2\right)-7\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}\right)\)     .  \(\frac{x+2\sqrt{x}+4}{\sqrt{x}+7}\)

\(\frac{x\sqrt{x}+2x+4\sqrt{x}-x\sqrt{x}+3\sqrt{x}-6+2x-7\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)

\(\frac{4x-16}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)

=\(\frac{4\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)

\(\frac{4\left(\sqrt{x}+2\right)}{\sqrt{x}+7}\)

\(\frac{4\sqrt{x}+8}{\sqrt{x}+7}\)

#mã mã#

3 tháng 8 2016

\(\sqrt{\frac{149^2-76^2}{457^2-384^2}}=\sqrt{\frac{73.225}{73.841}}=\sqrt{\frac{225}{841}}=\frac{\sqrt{225}}{\sqrt{841}}=\frac{15}{29}\)

4 tháng 9 2015

Dễ thui        

12 tháng 9 2016

I LOVE DƯƠNG DƯƠNG
 

2 tháng 7 2016

Bài 1:

Đặt \(a^2=x;b^2=y;c^2=z\)

Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)

Áp dụng BĐT cô si ta có:

\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)

\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)

Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)

Cộng lại ta được:

\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)

Sau đó bình phương hai vế rồi

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng

Vậy...

Bài 2:

Trước hết ta chứng minh bất đẳng thức sau:

\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)

Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau: 

\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)

\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)

\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)

Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)

Từ đó ta có:

\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)

Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có 

\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)

Dấu = xảy ra khi a=b=c 

c bạn tự làm nhé mình mệt rồi :D

2 tháng 7 2016

- Ôi má ơi, má patient dử dậy :)