K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

\(A=3^{100}-3^{99}+3^{98}-...-3+1\\ \Rightarrow\dfrac{1}{3}A=3^{99}-3^{98}+3^{97}-...-1+\dfrac{1}{3}\\ \Rightarrow\dfrac{4}{3}A=3^{100}+\dfrac{1}{3}\\ \Rightarrow A=\dfrac{3^{101}}{4}+\dfrac{1}{4}\)

26 tháng 10 2023

a: \(A=3^{100}-3^{99}+3^{98}-...+3^2-3\)

=>\(3A=3^{101}-3^{100}+3^{99}-...+3^3-3^2\)

=>\(4A=3^{101}-3\)

=>\(A=\dfrac{3^{101}-3}{4}\)

b: \(B=\left(-2\right)^0+\left(-2\right)^1+...+\left(-2\right)^{2024}\)

=>\(B\cdot\left(-2\right)=\left(-2\right)^1+\left(-2\right)^2+...+\left(-2\right)^{2025}\)

=>\(-2B-B=\left(-2\right)^1+\left(-2\right)^2+...+\left(-2\right)^{2025}-\left(-2\right)^0-\left(-2\right)^1-...-\left(-2\right)^{2024}\)

=>\(-3B=-2^{2025}-1\)

=>\(B=\dfrac{2^{2025}+1}{3}\)

c: \(C=\left(-\dfrac{1}{5}\right)^0+\left(-\dfrac{1}{5}\right)^1+...+\left(-\dfrac{1}{5}\right)^{2023}\)

=>\(\left(-\dfrac{1}{5}\right)\cdot C=\left(-\dfrac{1}{5}\right)^1+\left(-\dfrac{1}{5}\right)^2+...+\left(-\dfrac{1}{5}\right)^{2024}\)

=>\(\left(-\dfrac{6}{5}\right)\cdot C=\left(-\dfrac{1}{5}\right)^{2024}-\left(-\dfrac{1}{5}\right)^0\)

=>\(C\cdot\dfrac{-6}{5}=\dfrac{1}{5^{2024}}-1=\dfrac{1-5^{2024}}{5^{2024}}\)

=>\(C\cdot\dfrac{6}{5}=\dfrac{5^{2024}-1}{5^{2024}}\)

=>\(C=\dfrac{5^{2024}-1}{5^{2024}}:\dfrac{6}{5}=\dfrac{5^{2024}-1}{6\cdot5^{2023}}\)

11 tháng 3 2021

Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).

16 tháng 7 2018

S = 22 + 42 + 62 + ... + 202

   = (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2

   = 22.12 + 22.22 + 22.32 + ... + 22.102

   = 22 (12 + 22 + ... + 102 )

   = 4 . 385 = 1540

11 tháng 6 2017

2 tháng 8 2021

A. 1155 nha bạn 

16 tháng 9 2017

Ta có : \(1^2+2^2+3^2+.....+10^2=385\)

\(\Leftrightarrow2^2\left(1^2+2^2+3^2+.....+10^2\right)=2^2.385\)

\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=4.385\)

\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=1540\)

16 tháng 9 2017

Sửa đề: CHo 12+22+...+102=385. Tính S = 22+42 +...+ 202

S = 22 + 42 +...+ 202

= (1.2)2 + (2.2)2 +...+ (2.10)2

= 12.22 + 22.22 +...+ 22.102

= 22(12 + 22 +...+ 102)

= 4.385

= 1540

Chọn B

a:

Số số hạng trong dãy M là:

(1002-12):10+1=100(số)

=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10

\(M=1002-992+982-972+...+22-12\)

\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)

\(=10+10+...+10\)

=10*50=500

b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)

\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)

=10+10+...+10

=10*10=100