Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1.2+2.3+3.4+4.5+...+98.99+99.100
suy ra :3S=1.2.3+2.3.3+3.4.3+4.5.3+...+98.99.3+99.100.3
3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+98.99.(100-97)+99.100.(101-98)
3S=1.2.3.0+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+98.99.100-97.98.99+99.100.101-98.99.100
3S=99.100.101
Suy ra :S=99.100.10:3=333300
vậy S=333300
Ta có : A=1.2+2.3+3.4+....+2015.2016
=>3A= 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 + ... + 2017.2018.3
=>3A= 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5-2 ) + 4.5.( 6-3 ) + ... 2017 . 2018 . ( 2019 - 2016 )
=>3A=-1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 + 4.5.6 - 4.5.3 +.....+ 2017 . 2018 .2019 - 2017 . 2018 . 2016
=>A= 2017 . 2018 . 2019
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Bạn rút gọn chéo đi 2 với 2 ,3 với 3 cứ như thế còn mỗi 1/100. k nhé
333...3x666...6=333...3x(3x222...2)=999...9x222...2=(1000...0-1)x222...2=1000...0x222...2-222...2=222...2000...0-222...22
A = 1.2 + 2.3 + 3.4 + ... + 2013.2014
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2013.2014.3
Mà :
1.2.3 = 1.2.3
2.3.3 = 2.3.4 - 2.3.1
3.4.3 = 3.4.5 - 3.4.2
2012.2013.3 = 2012.2013.2014 - 2012.2013.2011
2013.2014.3 = 2013.2014.2015 - 2013.2014.2012
Cộng tất cả, vế theo vế ---> 3S = 2013.2014.2015
=> A = 2013.2014.2015 / 3 = 2723058910
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 49.50.3
=> 3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 49.50.( 51 - 48 )
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 49.50.51 - 48.49.50
=> 3A = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 48.49.50 - 48.49.50 ) + 49.50.51
=> 3A = 49.50.51
=> A = ( 49.50.51 ) : 3
=> A = 41650
A = 1.2 + 2.3 + 3.4 + ..... + 49.50
3A=1.2.3+2.3.3+3.4.3+...+49.50.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+48.49.(50-47)+49.50.(51-48)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+48.49.50-47.48.49+49.50.51-48.49.50
3A=(1.2.3-1.2.3)+(2.3.4-2.3.4)+...(47.48.49-47.48.49)-(48.49.50-48.49.50)+49.50.51
3A=0+0+...+0+0+49.50.51
3A=49.50.51
A=\(\frac{49.50.51}{3}\)
A=41650
Đáp số: A=41650
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n +1)3
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...+ n(n + 1)[(n + 2) - (n -1)]
= 1.2.3 + 2.3.4 - 2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - n(n + 1)(n - 1)
= n(n + 1)(n + 2)
=> S N(N+1)(n+2)/3
mk nhanh nhat nhat ban !!!
ta thấy mỗi hạng tử của tổng trên là tích của hai số tự nhiên liên tiếp , khi đó:
gọi a1=1.2=>3a1=1.2.3=>3a1=1.2.3-0.1.2
a2=2.3=>3a2=2.3.3=>3a2=2.3.4-1.2.3
a3=3.4=>3a3=3.3.4=>3a3=3.4.5-2.3.4
an-1=(n-1)n=>3an-1=3(n-1)n=>3an-1=(n-1)n(n+1)-(n-2)(n-1)n
an=n(n+1)=>3an=3n(n+1)=>3an=n(n+1)(n+2)-(n-1)n(n+1)
cộng các vế đẳng thức trên ta có:
3a1+3a2+...+3an-1+3an=1.2.3-0.1.2+2.3.4-1.2.3+...+(n-1)n(n+1)-(n-2)(n-1)n+n(n+1)(n+2)-(n-1)n(n+1) =>3(a1+a2+...+an-1+an)=n(n+1)(n+2)
mà A=a1+a2+...+an-1+an nên
\(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Gọi tổng trên là;A
A=9+99+999+........+999...9(20 số 9)
A=(10-1)+(100-1)+.......+(100...0(20 số 0)-1)
A=10+102+103+........+1020-(1+1+.........+1) 20 số 1
10A=102+103+.........+1021-200
10A-A=1021-10-200+20=1021-190
A=\(\frac{10^{21}-190}{9}\)
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
A=1.2+2.3+3.4+…+99.100
3A = 1.2.3 + 2.3.3 + ... + 99.100.3
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
=> A = \(\frac{99.100.101}{3}\)= 333 300