Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như bạn nhập sai đề bài rùi , thôi mik sửa theo cách mik thử
Nếu \(\left(\frac{1}{2}\right)^{2x}+1=\frac{1}{8}\)
Ta có: \(\left(\frac{1}{2}\right)^{2x}=-\frac{7}{8}\)
mà \(\left(\frac{1}{2}\right)^{2x}\ge0\forall x;-\frac{7}{8}< 0\)
\(\Rightarrow2x\in\varnothing\Rightarrow x\in\varnothing\)
3^-200=3^(-2x100)
2^-300=2^(-3x100)
=2^-300>3^-200
chúc bn học tốt
a, 3^(−200) và 2^(−300)
Ta có :
3^(−200) =(3^−2)^100=(1/9)^100
2^(−300) =(2^−3)^100=(1/8)^100
Do 1/9<1/8 nên 3^(−200) < 2^(−300)
b, 33^52 và 44^39
Ta có :
33^52 = ( 33^4)^13
44^39 = ( 44^3 )^13
33^4 = ( 33 4/3 )^3 = 106^3
106^3 > 44^3 ⇒ ( 33^4)^13 > ( 44^3 )^13 ⇒ 33^52 >44^39
#Học tốt#
ta có: -1 là nghiệm của đa thức D(x)
\(\Rightarrow-2.\left(-1\right)^2+a.\left(-1\right)-7a+3=0\)
\(-2-a-7a+3\)
\(-8a+1=0\)
\(-8a=-1\)
\(a=\frac{1}{8}\)
KL: a = 1/8
Ta có :
\(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)
\(=\)\(\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)
\(=\)\(\frac{2}{7}-\frac{1}{\frac{7}{2}}\)
\(=\)\(\frac{2}{7}-\frac{2}{7}\)
\(=\)\(0\)
Chúc bạn học tốt ~
\(A=\frac{2^{10}.3^8-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)
\(A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(A=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)
\(A=\frac{1-3}{1+5}=\frac{-1}{3}\)
Đặt S = \(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\)
=> 24S = 16S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}\)
=> 16S - S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}-\left(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\right)\)
=> 15S = \(2^3-\frac{1}{2^{101}}\)
=> S = \(\frac{2^3-\frac{1}{2^{101}}}{15}\)
Khi đó A = \(\frac{2^3-\frac{1}{2^{101}}}{15}:\left(2^3-\frac{1}{2^{101}}\right)=\frac{1}{15}\)