K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\dfrac{2}{\sqrt{3}+1}+\dfrac{2}{2-\sqrt{3}}\)

\(=\sqrt{3}-1+2+\sqrt{3}\)

\(=2\sqrt{3}+1\)

b: Ta có: \(\dfrac{4}{\sqrt{5}+2}+\dfrac{2}{3+\sqrt{5}}\)

\(=4\sqrt{5}-8+\dfrac{3}{2}-\dfrac{\sqrt{5}}{2}\)

\(=-\dfrac{13}{2}+\dfrac{7}{2}\sqrt{5}\)

21 tháng 12 2021

1)\(=\left|\sqrt{3}-3\right|+\sqrt{\left(\sqrt{3}-1\right)^2}=3-\sqrt{3}+\left|\sqrt{3}-1\right|=3-\sqrt{3}+\sqrt{3}-1=2\)

21 tháng 12 2021

2: \(=\sqrt{5}+2-\sqrt{5}=2\)

25 tháng 9 2021

1) \(ĐK:3-2a>0\Leftrightarrow a< \dfrac{3}{2}\)

2) \(ĐK:2x-5< 0\Leftrightarrow x< \dfrac{5}{2}\)

3) \(ĐK:3-5a< 0\Leftrightarrow a>\dfrac{3}{5}\)

4) \(ĐK:a< 0\)

5) \(ĐK:-a\ge0\Leftrightarrow a\le0\)

14 tháng 12 2021

\(M=\dfrac{3}{2}\cdot4\sqrt{2x}-\dfrac{1}{3}\cdot3\sqrt{2x}+\dfrac{2}{5}\cdot5\sqrt{2x}-4\sqrt{2x}=6\sqrt{2x}-\sqrt{2x}+2\sqrt{2x}-4\sqrt{2x}=3\sqrt{2x}\)

14 tháng 12 2021

mk cảm ơn nha

14 tháng 12 2021

\(M=6\sqrt{2x}-\sqrt{2x}+2\sqrt{2x}-4\sqrt{2x}=3\sqrt{2x}\)

14 tháng 12 2021

Cảm ơn nhiều

12 tháng 10 2021

a: Ta có: \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}\)

\(=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

=-5+2

=-3

b: Ta có: \(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}\cdot\sqrt[3]{4}\)

\(=\sqrt[3]{\dfrac{135}{5}}-\sqrt[3]{54\cdot4}\)

=3-6

=-3

25 tháng 9 2021

1) ĐKXĐ: \(x^2+2x-3\ge0\Leftrightarrow\left(x+1\right)^2\ge4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1\ge2\\x+1\le-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)

2) ĐKXĐ: \(2x^2+5x+3\ge0\Leftrightarrow2\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{8}\Leftrightarrow\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{5}{4}\ge\dfrac{1}{4}\\x+\dfrac{5}{4}\le-\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge-1\\x\le-\dfrac{3}{2}\end{matrix}\right.\)

3) ĐKXĐ: \(x-1>0\Leftrightarrow x>1\)

4) ĐKXĐ: \(x-3< 0\Leftrightarrow x< 3\)

5) ĐKXĐ: \(x+2< 0\Leftrightarrow x< -2\)

6) ĐKXĐ: \(2a-1>0\Leftrightarrow a>\dfrac{1}{2}\)

22 tháng 8 2023

Bài 1: 

a) \(\sqrt{1,44\cdot1,21-1,44\cdot0,4}\)

\(=\sqrt{1,44\cdot\left(1,21-0,4\right)}\)

\(=\sqrt{1,44\cdot0,81}\)

\(=\sqrt{1,44}\cdot\sqrt{0,81}\)

\(=1,2\cdot0,9\)

\(=1,08\)

b) \(\dfrac{\sqrt{5}-2}{\sqrt{5}+2}+\sqrt{80}\)

\(=\dfrac{\left(\sqrt{5}-2\right)^2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+4\sqrt{5}\)

\(=\dfrac{5-4\sqrt{5}+4}{1}+4\sqrt{5}\)

\(=9-4\sqrt{5}+4\sqrt{5}\)

\(=9\)

c) \(\sqrt[3]{16}+\sqrt[3]{2}\left(\sqrt[3]{4}-\sqrt[3]{2}\right)\)

\(=\sqrt[3]{2^3\cdot2}+\sqrt[3]{2\cdot4}-\sqrt[3]{2\cdot2}\)

\(=2\sqrt[3]{2}+\sqrt[3]{8}-\sqrt[3]{4}\)

\(=2\sqrt[3]{2}+2-\sqrt[3]{4}\)

22 tháng 8 2023

Bài 2: Ta có: 

\(VT=\dfrac{1}{\sqrt{a}-\sqrt{b}}:\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}:\dfrac{\sqrt{ab}\cdot\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\cdot\dfrac{1}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{\left(a-b\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{1}{a-b}=VP\left(dpcm\right)\)

8 tháng 7 2023

\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)

\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)

\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)

\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)