Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
a, \(\sqrt{\left(2x+3\right)^2}=x+1\)
\(\Leftrightarrow\left|2x+3\right|=x+1\)
TH1: \(\left\{{}\begin{matrix}2x+3=x+1\\2x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x\ge-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.
Vậy phương trình vô nghiệm.
TH2: \(\left\{{}\begin{matrix}-2x-3=x+1\\2x+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\x< -\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.
b,
a, \(\sqrt{\left(2x-1\right)^2}=x+1\)
\(\Leftrightarrow\left|2x-1\right|=x+1\)
TH1: \(\left\{{}\begin{matrix}2x-1=x+1\\2x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x\ge\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=2\)
TH2: \(\left\{{}\begin{matrix}-2x+1=x+1\\2x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=0\)
Nhiều vậy sao giải @@
a) Đặt \(a=\sqrt{1+x}+\sqrt{8-x}\)
\(\Leftrightarrow a^2=1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Leftrightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Leftrightarrow\frac{a^2-9}{2}=\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(pt\Leftrightarrow a+\frac{a^2-9}{2}=3\)
\(\Leftrightarrow\frac{a^2+2a-9}{2}=3\)
\(\Leftrightarrow a^2+2a-9=6\)
\(\Leftrightarrow a^2+2a-15=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-5\end{matrix}\right.\)
Tới đây thay vào rồi tìm x
b) \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
\(\Leftrightarrow2\left(x^2+2\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\)
Ta có : \(a^2+b^2=x^2-x+1+x+1=x^2+2\)
\(pt\Leftrightarrow2\left(a^2+b^2\right)=5ab\)
\(\Leftrightarrow2a^2+2b^2-5ab=0\)
\(\Leftrightarrow2a^2-4ab+2b^2-ab=0\)
\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\)
Tới đây thay vào rồi lại giải tiếp
p/s: Mình bận rồi, bao giờ rảnh giải tiếp
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )