Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6B = 2.4.6 + 4.6.(8-2) + 6.8.(10-4) + ... + 18.20.(22-16)
6B = 2.4.6 + 4.6.8 - 2.4.6 + 6.8.10 - 4.6.8 +...+ 18.20.22 - 16.18.20
6B = 18.20.
B = (18.20.22) : 6
B = 1320
Mấy bài kia tương tự, cần giải luôn không bạn? Nhưng hơi mất thời gian
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}=\frac{1}{8}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}.\left(\frac{58}{45}\right)\)
\(S=\frac{29}{45}\)
\(A=\) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.50}\)
A= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
A = \(\frac{1}{1}-\frac{1}{51}=\frac{50}{51}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\)
\(S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{9}-\frac{1}{2}+\frac{1}{10}\right)\)
\(S=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\right]\)
\(S=\frac{1}{2}.\left[\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\right]\)
\(S=\frac{1}{2}.\left[\left(1-\frac{1}{9}\right)-\left(\frac{1}{2}-\frac{1}{10}\right)\right]\)
\(S=\frac{1}{2}.\left(\frac{8}{9}-\frac{2}{5}\right)\)
\(S=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
Ta có :
\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Áp dụng ta được :
\(H=\frac{2.2}{1.3}\cdot\frac{3.3}{2.4}\cdot\frac{4.4}{3.5}\cdot\frac{5.5}{4.6}\cdot\frac{6.6}{5.7}\)
\(=\frac{\left(2.3.4.5.6\right)\left(2.3.4.5.6\right)}{\left(2.3.4.5\right)\left(3.4.5.6.7\right)}=\frac{6.2}{7}=\frac{12}{7}\)
a) \(A=2.4+4.6+6.8+...+18.20\)
\(6A=2.4.6+4.6.\left(8-2\right)+6.8.\left(10-4\right)+...+18.20.\left(22-16\right)\)
\(6A=2.4.6+4.6.8-2.4.6+6.8.10-4.6.8+...+18.20.22-16.18.20\)
\(6A=18.20.22\)
\(A=\frac{18.20.22}{6}=\frac{7920}{6}=1320\)
d/ Đặt : A = 1.2 + 2.3 + 3.4 + ......... + 99.100
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + 99.100.(101 - 98)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101
=> 3A = 99.100.101
=> A = 99.100.101 / 3
=> A = 333300
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(=\frac{4}{9}-\frac{1}{5}\)
\(=\frac{11}{45}\)
Ta có:
\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{17.19}\right)\left(1+\frac{1}{18.20}\right)\)
\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{324}{17.19}\frac{361}{18.20}\)
\(=\frac{2.2.3.3.4.4...18.18.19.19}{1.3.2.4.3.5...17.19.18.20}\)
Thấy kể từ phân số thứ 2 trở đi đến phân số thứ 2 từ cuối lên, ở tử và mẫu có thừa số a.a thì ở phân số trước và sau phân số đó cũng có mẫu chứa thừa số a nên ta rút gọn chúng.
=2.2.3.3.4.4...18.18.19.19/1.3.2.4.3.5...17.19.18.20
\(=\frac{2}{1.20}\)
\(=\frac{1}{10}\)
Đề sai nha em
Nếu để như này thì phải quy đồng hết