Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 1/19 x 29 + 1/29x39+.........+1/1999x2009
=1/19 - 1/29 . 1/29 - 1/39 ........ 1/1999-1/2009
=1/2009-1/19
=-1990/38171
=>1/19+-1990/38171
=1/2009
K MK MK K LAI
a)\(\frac{1}{99.97}\)−\(\frac{1}{97.95}\)−\(\frac{1}{95.93}\)−…−\(\frac{1}{5.3}\)−\(\frac{1}{3.1}\)
=\(\frac{1}{99.97}\)−(\(\frac{1}{97.95}\)+\(\frac{1}{95.93}\)+…+\(\frac{1}{5.3}\)+\(\frac{1}{3.1}\))
=\(\frac{1}{99.97}\)−\(\frac{1}{2}\).(\(\frac{1}{95}\)−\(\frac{1}{97}\)+\(\frac{1}{93}\)−\(\frac{1}{95}\)+…+\(\frac{1}{3}\)−\(\frac{1}{5}\)+1−\(\frac{1}{3}\))
=\(\frac{1}{99.97}\)−\(\frac{1}{2}\).(1−\(\frac{1}{97}\))
=\(\frac{1}{99.97}\)−\(\frac{1}{2}\).\(\frac{96}{97}\)
=\(\frac{1}{99.97}\)−\(\frac{48}{97}\)
=\(\frac{1}{99.97}\)−\(\frac{48.99}{99.97}\)
=\(\frac{-4751}{9603}\)
\(\frac{3x}{2.5}+\frac{3x}{5.8}+\frac{3x}{8.11}+\frac{3x}{11.14}=\frac{1}{21}\)
\(\Leftrightarrow x\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)
\(\Leftrightarrow\frac{3}{7}x=\frac{1}{21}\)
\(\Leftrightarrow x=\frac{1}{9}\)
Ta có : \(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-.....-\frac{1}{1024}\)
\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\right)\)
Đặt \(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\)
=> \(2A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{512}\)
=> \(2A-A=\frac{1}{2}-\frac{1}{1024}\)
Thay A vào ta có : \(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)
Jenny123 tham khảo nhé
Đặt tổng trên là A, ta có:
\(A.2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(A.2-A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{512}-"\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\)
\(\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}"\)
\(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}-\frac{1}{128}-\frac{1}{256}-\frac{1}{512}-\frac{1}{1024}\)
\(A=1-\frac{1}{1024}=\frac{1023}{1024}\)
P/s: Bn xem lại đề nha
giá trị nhỏ nhất của biểu thức
B= 1/2(x-1/2)^2+|2x-1|-3/2
(x-1/2)^2 và |2x-1| luôn không (-)
B nhỏ nhất =-3/2
khi x=1/2
Ta có : 1,12(32) = 1,12 + 0,0032
Mà 0,0032 = 32/9990
Nên : 1,12(32) = 28/25 + 32/9990 = 556/495
Nhập vào máy : Sích mak
công thức (2n - 1) ( 2n + 1) x chạy từ 1 đến 15 ok
ta có\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
tách
\(B=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2B=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2B-B=\frac{1}{2}-\frac{1}{1024}\)
thay vào B ta có
\(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)
\(A=\frac{1}{2}-\frac{1}{4}-\cdot\cdot\cdot-\frac{1}{1024}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\)
\(\Rightarrow2A=1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\)
\(\Rightarrow2A-A=\left(1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{2^9+1}{2^{10}}\)
\(\Rightarrow A=\frac{513}{1024}\)