Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\frac{1}{3}\right|+\frac{4}{5}=\left|-3,2+\frac{2}{5}\right|+\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^5}{9}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}+\left(27-\frac{3^2}{6}\right)\left(27-\frac{3^3}{7}\right)...\left(27-27\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|=2\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{3}=2\\x+\frac{1}{3}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=-\frac{7}{3}\end{cases}}}\)
bạn ơi, có một chỗ chưa chuẩn .bạn kiểm tra lại giú mình. chỗ vế trái bạn thiếu \(\left(27-\frac{3}{5}\right)\). bạn bổ sung vào cho đúng nhé. dù sao vẫn cảm ơn bạn.
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\frac{-14}{5}\right|\)
\(\left|x-\frac{1}{3}\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\-\frac{5}{3}\end{cases}}}\)
Vậy...
|x-1/3|+4/5=14/5
|x-1/3|=2
=>x-1/3=2 hoặc x-1/3=-2
=>x=7/3 hoặc x=-5/3
vậy x=7/3 hoặc x=-5/3
tk mk nha
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\\ \left|x-\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\\ \left|x-\frac{1}{3}\right|=2 \\ \Rightarrow\left[{}\begin{matrix}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{3}\\x=-\frac{5}{3}\end{matrix}\right.\)
Vậy...
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)
=> \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-\frac{16}{5}\right)+\frac{2}{5}\right|\)
=> \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|-\frac{14}{5}\right|=\frac{14}{5}\)
=> \(\left[{}\begin{matrix}x-\frac{1}{3}=\frac{14}{5}\\x-\frac{1}{3}=-\frac{14}{5}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{14}{5}+\frac{1}{3}\\x=-\frac{14}{5}+\frac{1}{3}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{47}{15}\\x=-\frac{37}{15}\end{matrix}\right.\)
Vậy:..................................
P/s: Ko chắc!
\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)
\(=3-\left(-1\right)\)
\(=4\)
b) \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)
\(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)
\(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)
\(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)
\(=\frac{199}{16}:\left(12-2\right)\)
\(=\frac{199}{16}:10\)
\(=\frac{199}{160}\)
c) \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)
\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)
\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)
a)\(\left|x+\frac{1}{5}\right|-4=-2\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=2\)
\(\Rightarrow x+\frac{1}{5}=2\) hoặc \(-2\)
Xét \(x+\frac{1}{5}=2\Leftrightarrow x=\frac{9}{5}\)
Xét \(x+\frac{1}{5}=-2\Leftrightarrow x=-\frac{11}{5}\)
a)
\(\begin{array}{l}{\left( {\frac{{ - 1}}{2}} \right)^5} = \frac{{{{\left( { - 1} \right)}^5}}}{{{2^5}}} = \frac{{ - 1}}{{32}};\\{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}};\\{\left( { - 2\frac{1}{4}} \right)^3} = {\left( {\frac{{ - 9}}{4}} \right)^3} = \frac{{{{\left( { - 9} \right)}^3}}}{{{4^3}}} = \frac{{-729}}{{64}};\\{\left( { - 0,3} \right)^5} = {\left( {\frac{{ - 3}}{{10}}} \right)^5} = \frac{{ - 243}}{{100000}};\\{\left( { - 25,7} \right)^0} = 1\end{array}\)
b)
\(\begin{array}{l}{\left( { - \frac{1}{3}} \right)^2} = \frac{1}{9};\\{\left( { - \frac{1}{3}} \right)^3} = \frac{{ - 1}}{{27}};\\{\left( { - \frac{1}{3}} \right)^4} = \frac{1}{{81}};\\{\left( { - \frac{1}{3}} \right)^5} = \frac{{ - 1}}{{243}}.\end{array}\)
Nhận xét:
+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.
+ Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)
\(\Leftrightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\frac{-14}{5}\right|\)
\(\Leftrightarrow\left|x-\frac{1}{3}\right|=2\)
\(\Leftrightarrow\left[\begin{matrix}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=\frac{7}{3}\\x=\frac{-5}{3}\end{matrix}\right.\)