Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(G=\frac{1}{3^0}+\frac{1}{3^1}+...+\frac{1}{3^{2005}}\)\(\Rightarrow3G=3+\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)
\(\Rightarrow3G-G=2G=3-\frac{1}{3^{2005}}\)\(\Rightarrow G=\frac{3-\frac{1}{3^{2005}}}{2}\)
\(Y=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)\(\Rightarrow2Y=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(\Rightarrow2Y-Y=2-\frac{1}{2^{2012}}\) \(\Rightarrow Y=2-\frac{1}{2^{2012}}\)
Câu 1 :
Số học sinh giỏi là :
\(52.\frac{1}{4}=13\)( học sinh )
Số học sinh còn lại là :
\(52-13=39\)( học sinh )
Số học sinh khá là :
\(39.\frac{5}{13}=15\)( học sinh )
Số học sinh trung bình là :
\(39-15=24\)( học sinh )
~ Hok tốt ~
Câu 2 :
a) [ 124 - ( 20 - 4x )] : 30 + 7 = 11
[ 124 - ( 20 - 4x )] : 30 = 11 - 7
[ 124 - ( 20 - 4x )] : 30 = 4
124 - ( 20 - 4x ) = 4 . 30
124 - ( 20 - 4x ) = 120
20 - 4x = 124 - 120
20 - 4x = 4
4x = 20 - 4
4x = 16
x = 16 : 4
x = 4
b) 1 - 2 + 3 - 4 + ... + 2019 - 2020
= ( 1 - 2 ) + ( 3 - 4 ) + ... + ( 2019 - 2020 )
= ( -1 ) + ( -1 ) + ... + ( -1 )
= ( -1 ) . 1010
= -1010
~ Hok tốt ~
\(a.\left(x+2\right)\cdot y=11\left(x+2>1\right)\)
\(\Rightarrow x+2;y\inƯ\left(11\right)=\left\{1;11\right\}\)
Mà vì x+2 > 1 Nên ta có
\(x+2=11\Rightarrow x=9;y=1\)
\(b.\left(x-1\right)\cdot\left(y-1\right)=15\)
\(\Rightarrow x-1;y-1\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Ta có các đáp án sau :
\(x-1=1;y-1=15\Rightarrow x=2;y=16\)
\(x-1=15;y-1=1\Rightarrow x=16;y=2\)
\(x-1=3;y-1=5\Rightarrow x=4;y=6\)
\(x-1=5;y-1=3\Rightarrow x=6;y=4\)
Bài 2:
Trong 1 giờ, người thứ nhất làm được 1/5(công việc)
Trong 1 giờ, người thứ hai làm được 1/8(công việc)
Nếu làm chung thì mỗi giờ hai người làm được:
1/5+1/8=13/40(công việc)
\(A=\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{99.100}\)
\(A=2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(A=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=2\left(1-\dfrac{1}{100}\right)\)
\(A=2.\dfrac{99}{100}\)
\(A=\dfrac{99}{50}\)
\(\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)
\(=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)
Ủng hộ mk nka!!!^_^^_^^_^
\(\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\left(\frac{9}{24}-\frac{18}{24}+\frac{14}{24}\right).\frac{6}{5}+\frac{2}{4}\)
\(=\frac{9-18+14}{24}.\frac{6}{5}+\frac{2}{4}\)
\(=\frac{5}{24}.\frac{6}{5}+\frac{2}{4}\)
\(=\frac{1}{4}+\frac{2}{4}=\frac{3}{4}\)
B=\(1+3^2+3^4+...+3^{100}\)
9B=\(3^2+3^4+...+3^{100}\)
9B-B=\(\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
8B=\(3^{102}-1\)
B=\(\left(3^{102}-1\right):8\)
C=\(1+5^3+5^6+...+5^{99}\)
125C=\(5^3+5^6+5^9+...+5^{102}\)
125C-C=\(\left(5^3+5^6+5^9+...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
124C=\(5^{102}-1\)
C=\(\left(5^{102}-1\right):124\)
\(M=\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(\frac{1}{3}\cdot M=\frac{1}{3}\cdot\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)
\(\frac{1}{3}\cdot M=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}\)
\(\frac{1}{3}\cdot M-M=-\frac{2}{3}\cdot M=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}-\left(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)
\(-\frac{2}{3}\cdot M=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}-\frac{1}{3^0}-\frac{1}{3^1}-\frac{1}{3^2}-...-\frac{1}{3^{2005}}\)
\(-\frac{2}{3}\cdot M=\frac{1}{3^{2006}}-\frac{1}{3^0}=\frac{1}{3^{2006}}-\frac{1}{1}=\frac{1}{3^{2006}}-1\Rightarrow M=\left(\frac{1}{3^{2006}}-1\right):\left(-\frac{2}{3}\right)\)
\(M=\left(\frac{1}{3^{2006}}-1\right)\cdot\left(-\frac{3}{2}\right)=\frac{1}{3^{2006}}\cdot\left(-\frac{3}{2}\right)-\left(-\frac{3}{2}\right)=-\frac{3}{3^{2006}\cdot2}-\left(-\frac{3}{2}\right)\)
Chúc bạn học tốt ^^!!!
\(M=\frac{1}{3^0}+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(\Rightarrow3M=3+1+\frac{1}{3}+...+\frac{1}{3^{2004}}\)
\(\Rightarrow3M-M=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3^0}+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)
\(\Rightarrow2M=3-\frac{1}{3^{2004}}\)
\(\Rightarrow M=\frac{3-\frac{1}{3^{2004}}}{2}\)