Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu tổng của n thứ tự tự nhiên đầu tiên bắt đầu bằng 1 là một số 3 chữ số với các chữ số giống nhau, tìm n.
Gọi tổng đó là aaa(aaa thuộc N*)
Ta có:
1+2+3+....+n=aaa
(n+1)x((n-1):1+1) : 2=a x 111
(n+1) x n:2=a x 3 x 37
(n+1) x n=a x 2 x 3 x37
suy ra : (n+1)n chia hết cho 37
suy ra n thuộc {36;37;73;74;....}
Vì 1+2+3+4+...+n=(73+1)73:2=74 x 73: 2=2701(Loại)
suy ra :n<73
suy ra : n thuộc {36;37}
+n=36 Suy ra n+1=37 Suy ra (n+1)n:2=666(Thỏa mãn)
+n=37 Suy ra n+1=38 Suy ra (n+1)n:2=703(Loại)
Vậy n=36
2: Ước của 120 là:
{1;2;3;4;5;6;8;10;12;15;20;24;30;40;60;120}
9: x+ (1+2+3+4+...+100) = 5750
x + 5050= 5750
x = 5750 - 5050 = 700
6. Chữ số thứ 215 là 1285
1) Fill the mussing number. A cube has \(8\) veres
2) Fill the missing number. We're in the \(21\) st century
3) Ther are only two 2-digit numbers that are a multiple of 7 and the sum of thetr two digits is 10. Find the sum of these two 2-digit numbers: 70,119,140,21 \(70\)
4) The fourth power of 3 is \(64\)
5) Twice the square of 3 \(18\)
6) The number of ethnic group in Vietnam? \(54\)
7) The perimeter of 4cm square egde in cm? \(1\)
: Gọi S là tập hợp gồm 8 chữ số đã cho tức là S = {0;1; 2; 3; 4; 5; 6; 7}
Xét các số abcde mở rộng gồm 5 chữ số khác nhau lấy từ S với a có thể bằng 0.
Có 8 cách chọn chữ số a lấy từ tập S.
Có 7 cách chọn chữ số b lấy từ tập S và khác a.
Có 6 cách chọn chữ số c lấy từ tập S và khác a, b.
Có 5 cách chọn chữ số d lấy từ tập S và khác a, b, c.
Có 4 cách chọn chữ số e lấy từ tập S và khác a, b, c, d.
Vậy có 8 x 7 x 6 x 5 x 4 = 6720 số abcde gồm 5 chữ số khác nhau lấy từ S.
Do vai trò mỗi chữ số của tập S xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 6720 : 8 = 840 lần xuất hiện của mỗi chữ số trong mỗi hàng.
Vậy tổng các số abcde mở rộng là:
840 x (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7) x 11111 = 261330720 (1)
Các số abcde mở rộng với a = 0 chính là các số bcde với b, c, d, e là các chữ số khác nhau lấy từ tập T = {1; 2; 3; 4; 5; 6; 7}.
Có 7 cách chọn chữ số b lấy từ tập T.
Có 6 cách chọn chữ số c lấy từ tập T và khác b.
Có 5 cách chọn chữ số d lấy từ tập T và khác b, c.
Có 4 cách chọn chữ số e lấy từ tập T và khác b, c, d.
Vậy có 7 x 6 x 5 x 4 = 840 số bcde với b, c, d, e khác nhau lấy từ tập T.
Do vai trò mỗi chữ số của tập T xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 840 : 7 = 120 lần xuất hiện của mỗi chữ số trong mỗi hàng.
Vậy tổng các số bcde là: 120 x (1 + 2 + 3 + 4 + 5 + 6 + 7) x 1111 = 3732960 (2)
Từ (1) và (2) suy ra tổng các số abcde cần tìm là:
261330720 – 3732960 = 257597760
ai đúng k hết nha