Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng của n số chẵn khác 0 đầu tiên là :
\(2+4+6+....+2n\)
\(=2\left(1+2+3+....+n\right)\)
\(=2.\frac{n\left(n+1\right)}{2}\)
\(=n\left(n+1\right)\) là tích 2 số tự nhiên liên tiếp
=> \(n\left(n+1\right)\) không thể là số chính phương
=> Tổng của n số chẵn khác 0 đầu tiên không thể là số chính phương (đpcm)
Tổng: 1+2+3+4+...+n=\(\frac{n\left(n+1\right)}{2}\), vì (n,n+1)=1 nên \(\frac{n\left(n+1\right)}{2}\)không chính phương.
Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )
Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒ n 2 < n ( n + 1 ) < n + 1 2
n 2 và n + 1 2 là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )
Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒ n 2 < n ( n + 1 ) < n + 1 2
n 2 và n + 1 2 là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.
tổng của n số tự nhiên chẵn đầu tiên khác 0 là :
\(2+4+6+...+2n\)
\(=2\left(1+2+3+...+n\right)\)
\(=2\cdot\frac{\left(1+n\right)\cdot n}{2}\)
\(=n\left(n+1\right)\) là tích của 2 số tự nhiên liên tiếp
=> tổng của n số tự nhiên chẵn đầu tiên khác 0 không phải là số chính phương