Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé !
\(\Delta AMB,\Delta AMC\)có chung AM , AB = AC , MB = MC (M là trung điểm BC) =>\(\Delta AMB=\Delta AMC\left(c.c.c\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{ACM}\)(2 góc tương ứng) ;\(\frac{\widehat{AMB}}{1}=\frac{\widehat{AMC}}{1}=\frac{\widehat{AMB}+\widehat{AMC}}{1+1}=\frac{180^0}{2}=90^0\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)
HD : xét 2 góc DAC và góc BAE
^DAB+^BAC=^DAC
^CAE+^BAC=^BAE
^DAB=^CAE=90o
=> ^DAC=^BAE
sau đó cm \(\Delta DAC=\Delta BAE\)=> câu a
b) cm DKE =90o
2 câu c ; d dễ tự làm!
Trên tia AM lấy điểm A’ sao cho AM = MA’
Dễ chứng minh được ∆AMC = ∆A’MB ( g.c.g)
A’B = AC ( = AE) và góc MAC = góc MA’B
AC // A’B => góc BAC + góc ABA’ = 180 0 (cặp góc trong cùng phía)
Mà góc DAE + góc BAC = 180 0 => góc DAE = góc ABA’
Xét ∆DAE và ∆ABA’ có : AE = A’B , AD = AB (gt)
góc DAE = góc ABA’ ∆DAE = ∆ABA’(c.g.c)
góc ADE = góc BAA’ mà góc HAD + góc BAA’ = 90 0
=> góc MAD + góc ADE = 90 0 . Suy ra MA vuông góc với DE
Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK
Xét \(\Delta AMN\)và \(\Delta KMB\)có\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)
\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)
\(\Rightarrow AN=BK=AM\)
mà \(AB>AM\Rightarrow AB>BK\)
\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)
\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)
Trên tia đồi của tia MA lấy điểm D sao cho: MA=MD
Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)
mặt khác:
\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)
a) Gọi I là trung điểm của AB,
K là trung điểm của AC.
Ta có:
\(IA=IE=MK=\frac{1}{2}AB\)
\(KF=KA=IM=\frac{1}{2}AC\)
TA CÓ TAM GIÁC IAE VÀ AKF LẦN LƯỢT CÂN TẠI I VÀ K
\(\Rightarrow\widehat{EIB}=2\widehat{xAB}=42^o;\widehat{CKF}=2\widehat{CAY}=42^o\)
\(\Rightarrow\widehat{EIB}=\widehat{CKF}\)
MI//AC
=> BIM=BAC ( đồng vị) (1)
M//AB
=> MKC=BAC (đồng vị)(2)
từ (1) và (2)
\(\Rightarrow\widehat{BIM}=\widehat{MKC}\)
TỪ ĐÂY TA CÓ THỂ DỄ DÀNG CÓ EIM=MKF
=> \(\Delta EIM\)= \(\Delta MKF\)
=> ME = MF
=> TAM GIÁC MEF cân tại M
Xét \(\Delta AMB;\Delta BMC\) có :
\(\left\{{}\begin{matrix}AB=BC\left(gt\right)\\BM=MC\\BMchung\end{matrix}\right.\)
\(\Leftrightarrow\Delta AMB=\Delta MBC\left(c-c-c\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{ACB=CAB\left(đpcm\right)}\\\widehat{M1=\widehat{M2}}\end{matrix}\right.\)
b/ Mà \(\widehat{M1}+\widehat{M2}=180^0\left(kềbuf\right)\)
\(\Leftrightarrow\widehat{M1}=\widehat{M2}=\dfrac{180^0}{2}=90^0\left(đpcm\right)\)