Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng
Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:
Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh
Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.
Vậy ta có điều phải chứng minh.
Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng
Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:
Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh
Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.
Vậy ta có điều phải chứng minh.
bài này dùng nguyên lý drichlet toán rời rạc
Giả sử từ điểm A trong 17 điểm đã cho nối với 16 điểm còn lại bằng 3 loại màu => Theo nguyên lý Dirichlet có ít nhất 6 đoạn thẳng cùng một màu, giả sử đó là các đoạn thẳng AB1; AB2; …;AB6 cùng được tô màu đỏ.
Nếu có 2 trong 6 điểm B1; B2; ..; B6 được nối với nhau bằng màu đỏ thì bài toán được chứng minh. Nếu không có 2 điểm nào được nối với nhau bằng màu đỏ thì 6 điểm này được nối với nhau bằng hai màu xanh hoặc vàng.
Từ điểm B1 ta nối với 5 điểm còn lại Þ Có 5 đoạn thẳng mà chỉ có 2 màu => Theo nguyên lý Diricle có ít nhất 3 đoạn thẳng cùng màu, giả sử đó là 3 đoạn thẳng B1B2, B1B3, B1B4 có cùng màu xanh.
Xét tam giác B2B3B4
TH1: nếu 3 cạnh của tam giác này cùng màu thì bài toán đã được giải xong.
TH2: 3 cạnh của tam giác không cùng màu thì sẽ có ít nhất 1 cạnh có màu xanh giả sử đó là cạnh B2B3 => Tam giác B1B2B3 có ba cạnh cùng màu xanh.
Vậycó đpcm
Bài này không khó chỉ cần sử dụng nguyên tắc Đirichle
+ Dễ dàng thấy có ít nhất 6 điểm cùng màu
+ Với 6 điểm này, xét các đoạn thảng nối một điểm A với các điểm còn lại tồn tại ba đoạn cùng màu giả sử là AB, AC, AD. Khi đó một trong bốn tam giác ABC, ACD, ABD, BCD là tam giác cần tìm
(bài toán này chỉ hay ở chỗ cho nhiều màu làm học sinh ... hãi nhưng nếu nắm chắc cơ bản thì okie ngay!)
Em khoái nhứt là làm tổ hợp trên diễn đàn vì không phải đánh Latex
Bạn ơi, bản chất ý bạn nói thì mik hiểu rõ nhưng mik cần nhờ bạn trình bày chi tiết giùm mik(ko biết cách trình bày ý mà)
Thanks bạn nhìu nha.
Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng