Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hạt dẻ trên mỗi ô (bắt đầu từ ô thứ nhất) theo thứ tự đó lập thành cấp số cộng ( u n ) có u 1 = 7 , d = 5.
Gọi n là số ô trên bàn cờ thì u 1 + u 2 + ⋯ + u n = 25450 = S n .
Ta có 25450 = S n = n u 1 + n n − 1 2 d = 7 n + n 2 − n 2 .5
⇔ 5 n 2 + 9 n − 50900 = 0 ⇔ n = 100
Chọn đáp án B
Đáp án D
Gọi ô chứa hạt thóc thỏa mãn đề bài là ô thứ n ( n ∈ N , n > 1 ) . Khi đó
Số hạt thóc ở các ô từ ô thứ nhất đến thứ sáu: 1; 2; 4; 8; 16; 32
Ta có:
S = u1 + u2 + u3 + u4 + u5 + u6 + u7 + u8 + u9 + u10 + u11
= u1 + u1.q + u1.q2 +⋯+ u1.q9 + u1.q10 (1)
⇒ S.q = u1.q + u1.q2 +⋯+ u1.q9 + u1.q10 + u1.q11 (2)
Lấy (1) trừ (2), ta được:
Chọn A
Không gian mẫu là 8 3
Có hai trường hợp
+ Trường hợp 1: Bước 1 đi 4 ô góc thì bước 2 có 2 cách đi, bước 3 có 1 cách đi
+ Trường hợp 2: Bước 1 đi 4 ô còn lại thì bước 2 có 4 cách đi, bước 3 có 1 cách đi
Vậy tât cả có 4.2 + 4.4 = 24
Suy ra xác suất để sau 3 bước đi quân vua trở về ô ban đầu là:
Chọn D.
Số hạt dẻ trên mỗi ô (bắt đầu từ ô thứ nhất) theo thứ tự đó lập thành cấp số cộng có u1 = 7; d = 5 .
Gọi n là số ô trên bàn cờ thì u1 + u2 + L + un = 25450 = Sn
Ta có 25450 = Sn = 5n2 + 9n – 50900 = 0
Hay n = 100.