Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Phương trình hoành độ của đường thẳng (d) và parapo (P) là :
\(x^2=\left(k-1\right)x+2\)
\(\Leftrightarrow x^2-\left(k-1\right)x-2=0\)
\(\Delta=\left(k-1\right)^2+8=k^2-2k+9>0\)
Vì đen - ta lớn hơn 0 nên với mọi k thì (d) luôn cắt (P) tại 2 điểm phân biệt .
b ) Theo hệ thức vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=k-1\\x_1x_2=-2\end{matrix}\right.\)
Mà : \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=\left(x_1+x_2\right)^2-2x_1x_2=\left(k-1\right)^2+4\\y_1y_2=\left(x_1x_2\right)^2=4\end{matrix}\right.\)
Theo đề bài \(y_1+y_2=y_1y_2\)
\(\Rightarrow\left(k-1\right)^2+4=4\)
\(\Rightarrow k=1\)
sửa cho dễ nhìn :Cho dg thẳng (d):y=mx+10 và (P):y=\(x^2\).Tìm tất cả các giá trị của m để \(\left|x_1\right|>\left|x_2\right|\) với \(x_1< x_2\)
bài làm
Theo pt hoành độ hoành độ giao điểm của (d) và (P) ta có
\(x^2=mx+10\)
⇔\(x^2-mx-10=0\)
\(\Delta=\left(-m\right)^2-4\cdot\left(-10\right)=m^2+40>0\)(với mọi m)
Theo định lí Vi-ét ta có
\(x_1+x_2=m\)
\(x_1x_2=10\)
Ta có \(\left|x_1\right|>\left|x_2\right|\)
⇔\(\left(\sqrt{x_1}\right)^2>\left(\sqrt{x_2}\right)^2\)
⇔\(\left(\sqrt{x_1}\right)^2-\left(\sqrt{x_2}\right)^2>0\)
⇔\(\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)>0\)
⇔\(\left(\sqrt{x_1-2\sqrt{x_1x_2}+x_2}\right)\left(\sqrt{x_1+2\sqrt{x_1x_2}+x_2}\right)>0\)
⇔\(\left(\sqrt{10-2m}\right)\left(\sqrt{10+2m}\right)>0\)
⇔\(\sqrt{\left(10-2m\right)\left(10+2m\right)}>0\)
⇔\(\left(10-2m\right)\left(10+2m\right)>0\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}10-2m>0\\10+2m>0\end{matrix}\right.\\\left\{{}\begin{matrix}10-2m< 0\\10+2m< 0\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m< 5\\m>-5\end{matrix}\right.\\\left\{{}\begin{matrix}m>5\\m< -5\end{matrix}\right.\end{matrix}\right.\)
⇒-5<m<5
Vậy -5<m<5
\(|x_1|>|x_2|\) thì tương đương với $x_1^2>x_2^2$ em nhé.
Không có cơ sở để khẳng định $x_1,x_2$ dương để viết $\sqrt{x_1}, \sqrt{x_2}$
a) xa =-1 =>ya =1/2.(-1)^2 =1/2=> A(-1;1/2)
xb=2 =>yb =1/2.2^2 =2=> B(2;2)
\(\left\{{}\begin{matrix}\dfrac{1}{2}=-m+n\\2=2m+n\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-2m+2n=1\\2m+n=2\end{matrix}\right.\)=> n=1; m =1/2
b) \(AB=\sqrt{\left(x_b-x_a\right)^2+\left(y_b-y_a\right)^2}=\sqrt{3^2+\left(\dfrac{3}{2}\right)^2}=\sqrt{\dfrac{3^2\left(4^2+1\right)}{4^2}}=\dfrac{3\sqrt{17}}{4}\)\(S\Delta_{AOB}=\dfrac{1}{2}\left(\left|x_a\right|+\left|x_b\right|\right)\left(y_b-y_a\right)=\dfrac{1}{2}\left(1+2\right).\left(2-\dfrac{1}{2}\right)=\dfrac{1}{2}.3.\dfrac{3}{2}=\left(\dfrac{3}{2}\right)^2\)\(S_{\Delta AOC}=\dfrac{1}{2}OH.AB\)
\(OH=2.\dfrac{\dfrac{9}{4}}{\dfrac{3\sqrt{17}}{4}}=\dfrac{6}{\sqrt{17}}=\dfrac{6\sqrt{17}}{17}\)
theo dg thẳng x=(4m+1)/(2m+1);y=-4m-1
Ta có Khoảng cách từ dg thẳng đến A là
căn((4m+1)/(2m+1)+2)^2+(-4m-1-3)^2)
tự khai ra giải pt
Phương trình hoành độ giao điểm: \(x^2+2ax+4a=0\)
\(\Delta'=a^2-4a>0\Rightarrow\left[{}\begin{matrix}a< 0\\a>4\end{matrix}\right.\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2a\\x_1x_2=4a\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=3\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=9\)
\(\Leftrightarrow4a^2-8a+8\left|a\right|=9\)
- Với \(a>0\) \(\Rightarrow4a^2=9\Rightarrow a^2=\frac{9}{4}\Rightarrow a=\frac{3}{2}< 4\left(l\right)\)
- Với \(a< 0\Rightarrow4a^2-16a-9=0\Rightarrow\left[{}\begin{matrix}a=-\frac{1}{2}\\a=\frac{9}{2}>0\left(l\right)\end{matrix}\right.\)
Vậy \(a=-\frac{1}{2}\)