K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 9 2020

Gọi d là đường thẳng qua M vuông góc \(\Delta\)

Phương trình d có dạng:

\(1\left(x-10\right)-2\left(y-11\right)=0\Leftrightarrow x-2y+12=0\)

Gọi N là giao của d và \(\Delta\) , tọa độ N thỏa mãn:

\(\left\{{}\begin{matrix}2x+y+1=0\\x-2y+12=0\end{matrix}\right.\) \(\Rightarrow N\left(-\frac{14}{5};\frac{23}{5}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_N-x_M=-\frac{78}{5}\\y_{M'}=2y_N-y_M=-\frac{9}{5}\end{matrix}\right.\) \(\Rightarrow M'\left(-\frac{78}{5};-\frac{9}{5}\right)\)

30 tháng 11 2017

Gọi M′, d′ và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua trục Ox .

Khi đó M′ = (3;5) . Để tìm ta viết biểu thức tọa độ của phép đối xứng qua trục:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Thay (1) vào phương trình của đường thẳng d ta được 3x′ − 2y′ − 6 = 0.

Từ đó suy ra phương trình của d' là 3x − 2y – 6 = 0

Thay (1) vào phương trình của (C) ta được x ' 2   +   y ' 2   −   2 x ′   +   4 y ′   −   4   =   0 .

Từ đó suy ra phương trình của (C') là x   −   1 2   +   y   −   2 2   =   9 .

Cũng có thể nhận xét (C) có tâm là I(1; −2), bán kính bằng 3,

từ đó suy ra tâm I' của (C') có tọa độ (1;2) và phương trình của (C') là x   −   1 2   +   y   −   2 2   =   9

9 tháng 6 2018

a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O.

Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :

M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x 2   +   y 2   −   2 x   +   6 y   +   6   =   0 .

b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .

Vì I là trung điểm của MM' nên M′ = (4;1)

Vì d' song song với d nên d' có phương trình 3x – y + C = 0.

Lấy một điểm trên d, chẳng hạn N(0; 9).

Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5).

Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.

Vậy phương trình của d' là 3x – y – 11 = 0.

Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3),

bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1).

Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là x   −   3 2   +   y   −   1 2   =   4 .

18 tháng 11 2019

Đường thẳng d thành đường thẳng d’ có phương trình được xác định bằng cách: Mỗi điểm M(x;y) ∈ d' là ảnh của 1 điểm M0(x0;y0) thuộc d qua phép tịnh tiến theo vecto u=(2;3), ta có:

\(\left\{{}\begin{matrix}M_0\left(x_0;y_0\right)\in d\\\overrightarrow{M_0M}=\overrightarrow{u}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2y_0+2=0\\x_0 =x-2\\y_0=y-3\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)-2\left(y-3\right)+2=0\Leftrightarrow x-2y+6=0\)

Đây là phương trình của d'

18 tháng 11 2019
https://i.imgur.com/gQSjk9l.jpg
24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

28 tháng 3 2018

Chọn D

NV
21 tháng 7 2021

1.

Lấy \(M\left(1;-1\right)\) là 1 điểm thuộc \(\Delta\)

Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in\Delta'\)

\(\left\{{}\begin{matrix}x'=1+1=2\\y'=-1+a\end{matrix}\right.\) \(\Leftrightarrow M'\left(2;-1+a\right)\)

Do M' thuộc \(\Delta'\) nên:

\(2+2\left(-1+a\right)-1=0\Rightarrow a=\dfrac{1}{2}\)

\(\Rightarrow\overrightarrow{v}=\left(1;\dfrac{1}{2}\right)\)

2. Xem lại đề bài, chỉ có \(d_1;d_2\) và không thấy d đâu hết

23 tháng 7 2021

\(d\) là \(d_1\)\(d_1\)là \(d_2\)