Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Gọi A là một điểm thuộc d => tọa độ của A thỏa mãn HPT
Đáp án C
HD: Gọi H(1+2t;-1+t;2-t) là hình chiếu của A trên d
Suy ra H(3;0;1), phương trình đường thẳng AH là
Đáp án D
Gọi phương trình đường thẳng ∆ là
Vì ∆ nằm trong mặt phẳng (P)
Góc giữa hai đường thẳng ∆ và Oz là
Ta có
Khi cos α lớn nhất ⇒ α nhỏ nhất và bằng a r cos 6 3 . Xảy ra khi b = 2 c = 2 a
Do đó, phương trình đường thẳng ∆ là
a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)
b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)
\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)
c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)
Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)
Đáp án B
Xét ( S ) : x 1 2 + y - 2 2 + z - 3 2 = 16 có tâm I(1;2;3), bán kính R = 4
Gọi O là hình chiếu của I trên (P).
Khi và chỉ khi IO ≡ IHvới H là hình chiếu của I trên AB.
I H → là véc tơ pháp tuyến của mp (P) mà IA = IB => H là trung điểm của AB
Chọn A
Nhận thấy tam giác ABC đều có trọng tâm G (2;2;2), và OG ⊥ (ABC) nên hình chiếu của O lên (ABC) là điểm G
Vì OG và cố định nên thể tích nhỏ nhất khi và chỉ khi AM. AN nhỏ nhất.
Vì M, N, G thẳng hàng nên , suy ra . Đẳng thức xảy ra khi .
Khi đó mặt phẳng (P) đi qua O và nhận là một vectơ pháp tuyến, do đó (P): x+y-2z=0.