K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ đường cao CH của tam giác ACD vuông tại C. Khi đó

AH = BC = 4, HD = AD – AH = 12.

Từ đó

H C 2  = HA.HD = 48, vậy HC = 4 3

Trong tam giác vuông HCD, ta có

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Nên  ∠ D =  30 ° . Suy ra ∠(BCD) =  180 °  -  30 °  =  150 °

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

24 tháng 6 2017

Vị trí tương đối của đường thẳng và đường tròn

Vị trí tương đối của đường thẳng và đường tròn

4 tháng 9 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a. Kẻ BE ⊥ CD

Suy ra tứ giác ABED là hình chữ nhật

Ta có: AD = BE

AB = DE = 4 (cm)

Suy ra: CE = CD – DE = 9 – 4 = 5 (cm)

Áp dụng định lí Pitago vào tam giác vuông BCE ta có :

BC2 = BE2 + CE2

Suy ra : BE2 = BC2 – CE2 = 132 – 52 = 144

BE = 12 (cm)

Vậy: AD = 12 (cm)

b. Gọi I là trung điểm của BC

Ta có: IB = IC = (1/2).BC = (1/2).13 = 6,5 (cm) (1)

Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Từ (1) và (2) suy ra : IB = IH = R

Vậy đường tròn (I ; BC/2 ) tiếp xúc với đường thẳng AD

28 tháng 7 2019

a . Gọi O là tâm của đường tròn có đường kính BC.

Xét \(\Delta\)BMC vuông tại M có O là trung điểm của BC (OB=OC)

\(\Rightarrow CB=MO=OC\)

\(\Leftrightarrow M\in\left(O;OB\right)\left(1\right)\)

Xét hình thang ABCD có :

M là trung điểm của AD;O là trung điểm của BC

\(\Rightarrow MO\) là đường trung bình

\(\Leftrightarrow\)AB//MO

Mà AD\(\perp\)AB

\(\Rightarrow MO\perp AD\left(2\right)\)

Từ \(\left(1\right)\left(2\right)suyra\) AD là tiếp tuyến của đường tròn đường kính BC