Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Do mặt phẳng (Q) chứa A,B và vuông góc với mặt phẳng (P)
Do đó (Q): 3x-2y-z-3=0
Đáp án D
Các vtpt của (Q) và (R) lần lượt là:
=> vtpt của (P) là:
Hay (P): 4x +5y -3z -22=0
Chọn C
Phương pháp
Mặt phẳng (P) vuông góc với cả hai mặt phẳng (Q),(R) nên
Đáp án D
Từ giả thiết suy ra:
Mặt khác mặt phẳng (P) đi qua điểm B(2 ;1 ;3) nên ta có phương trình của mặt phẳng (P) là:
4(x - 2) + 5(y - 1) + 3(z - 3) = 0 ⇔ 4x + 5y + 3z - 22 = 0
a. (P) vuông góc denta nên nhận (1;2;3) là 1 vtpt
Phương trình (P):
\(1\left(x-2\right)+2\left(y-1\right)+3\left(z-3\right)=0\)
\(\Leftrightarrow x+2y+3z-13=0\)
b. \(\overrightarrow{AB}=\left(1;2;-1\right)\) ; \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\)
\(\left[\overrightarrow{AB};\overrightarrow{n_{\left(P\right)}}\right]=\left(3;-2;-1\right)\)
Phương trình mp:
\(3\left(x-1\right)-2\left(y+1\right)-1\left(z-2\right)=0\)
\(\Leftrightarrow3x-2y-z-3=0\)
Chọn B.