Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương pháp: Lần lượt tìm các yếu tố tâm và bán kính của mặt cầu.
Cách giải: Tọa độ tâm mặt cầu thỏa mãn hệ
Đáp án C
Vectơ pháp tuyến của mặt phẳng (P) là n → = 2 ; − 2 ; − 1
Gọi u → là vectơ chỉ phương của đường thẳng IH
Vì IH ⊥ P nên u → = n → = 2 ; − 2 ; − 1
Phương trình đường thẳng IH qua I(1;2;3) và có vectơ chỉ phương u → = 2 ; − 2 ; − 1 là x = 1 + 2 t y = 2 − 2 t z = 3 − t
Tọa độ của H ∈ IH là H 1 + 2 t ; 2 − 2 t ; 3 − t
Mặt cầu tâm I tiếp xúc với (P) tại điểm H nên H ∈ P
Khi đó 2 1 + 2 t − 2 2 − 2 t − 3 − t − 4 = 0
⇒ t = 1 ⇒ H 3 ; 0 ; 2
Chọn A
Cách giải:
Gọi B là điểm tiếp xúc của mặt cầu (S) và mặt phẳng (P)
=> IB=R
Gọi H là hình chiếu của A xuống (P)
Đáp án A
Tọa độ điểm H là hình chiếu vuông góc của I lên mặt phẳng (α). Do IH⊥(α) nên IH có phương trình tham số
Tọa độ điểm H là nghiệm của hệ phương trình
Đáp án C.
Mặt phẳng (Q) có vectơ pháp tuyến n → 2 ; − 2 ; − 1
Mặt cầu (S) tâm M và tiếp xúc với mặt phẳng (Q) nên có bán kính R = d M , Q = 2.2 + 2 + 1 4 + 4 + 1 = 7 3
Phương trình mặt cầu S : x − 2 2 + y − 1 2 + z 2 = 49 9
Chọn C
Tiếp điểm là hình chiếu vuông góc của I lên mặt phẳng (P)