K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

6 tháng 1 2018

Đáp án B.

Phương pháp giải: Gọi tọa độ điểm, tính khoảng cách và tìm tọa độ tâm thông qua bán kính 

Lời giải: Ta có 

Phương trình mặt phẳng (Oxy): z=0

Khoảng cách từ tâm  I đến mp(Oxy) là 

Theo bài ra, ta có 

4 tháng 8 2017

27 tháng 6 2018

6 tháng 6 2018

Chọn D

29 tháng 8 2018

Chọn A

Cách 1:

 

 

Cách 2: Ta có  nên hai mặt cầu cắt nhau theo một đường tròn giao tuyến.

 

Gọi I = AB ∩ (α) với (α) là mặt phẳng thỏa mãn bài toán.

Hạ  vuông góc với mặt phẳng .

Khi đó ta có I nằm ngoài AB và B là trung điểm AI 

Suy ra I (2;1;2). Gọi (α): a(x-2) + b(y-1) + c(z-2) = 0.

Vì (α) // CD   nên ta có 2a + b - 2c = 0 => b = 2c - 2a

Ta có hai trường hợp:

Nếu b = -2c; a = 2c => (α): 2c (x-2) + 2c (y-1) + c(z-2) = 0 => 2x - 2y + z - 4 = 0

Mặt khác CD // (α) nên CD ∉ (α) loại trường hợp trên.

Nếu b = c;  a = c/2 =>  (α): c/2 . (x-2) + c (y-1) + c(z-2) = 0 => x + 2y + 2z - 8 = 0

Kiểm tra thấy CD ∉ (α) nên nhận trường hợp này. Vậy (α): x + 2y + 2z - 8 = 0

10 tháng 5 2017

25 tháng 10 2018

1 tháng 3 2018

Đáp án D

Phương trình tham số của đường thẳng d là : d: x = 1 +2 t, y = 3+ 4t, z = t

Ta có I  d => I(1 + 2t, 3 + 4t, t). Vì (S) tiếp xúc với mặt phẳng (P) nên ta có: