Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Phép quay tâm O góc quay − 45 ° biến điểm M(x; y) thành điểm M’(x’;y’) với biểu thức tọa độ là:
Với M(1; 1) suy ra tọa độ điểm M’ là x ' = x cos − 45 ° − y sin − 45 ° y ' = x sin − 45 ° + y cos − 45 ° ⇔ x ' = 2 2 x + 2 2 y y ' = − 2 2 x + 2 2 y
+) Phép đối xứng tâm O biến điểm M’ thành M’’ x ' = 2 2 .1 + 2 2 .1 = 2 y ' = − 2 2 .1 + 2 2 .1 = 0 ⇒ M ' 2 ; 0
Suy ra tọa độ M ' ' − 2 ; 0
Đáp án D
Gọi tam giác A'B'C' là ảnh của tam giác ABC qua phép biến hình trên.
(e)Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép vị tự tâm O tỉ số k = -2
+) Qua phép đối xứng qua trục Oy biến tam giác ABC thành tam giác A 1 B 1 C 1
Do đó, tọa độ A 1 - 1 ; 1 ; B 1 0 ; 3 v à C 1 - 2 ; 4 .
+) Qua phép vị tự tâm O tỉ số k = -2 biến tam giác A 1 B 1 C 1 thành tam giác A 2 B 2 C 2
Biểu thức tọa độ :
Tương tự; B 2 0 ; - 6 v à C 2 4 ; - 8
Vậy qua phép đối xứng trục Oy và phép vị tự tâm O tỉ số k = -2, biến các điểm A, B, C lần lượt thành
A 2 2 ; - 2 ; B 2 0 ; - 6 v à C 2 4 ; - 8 .
Tam giác đều KMM’ có cạnh MM’ = 2 nên đường cao bằng √3.
Suy ra OK = √3-1 ⇒ K(0; 1-√3)
Nhận xét. Phép quay có góc quay bằng ±600 thì tam giác tạo bởi tâm quay, điểm M và ảnh M’ của nó luôn tạo thành một tam giác đều.
Đáp án C
Đáp án D
+) Lấy điểm M(x; y) thuộc đường thẳng d có phương trình y = x + 1
Gọi M’(x’; y’) là ảnh của M qua phép đối xứng tâm O
Khi đó ta có: x ' = − x y ' = − y
Suy ra M’(-x; -y)
Gọi M’’ là ảnh của M’ qua phép quay tâm O góc 90 °
Khi đó tọa độ của M’’ là: x ' ' = − − y = y y ' ' = − x ⇔ x = − y ' ' y = x ' '
Thay vào phương trình d ta được: x’’ = -y’’ + 1 hay x’’ + y’’ - 1 = 0
Hay x + y - 1 = 0
Đáp án D
a) M(-1;1) đối xứng qua trục Oy ta được N(-1;1).
Gọi M'(x;y) là ảnh của N(-1;1) qua phép tịnh tiến theo vectơ v → = ( 2 ; 0 )
b) Gọi P(x;y) là ảnh của M(1;1) qua phép tịnh tiến theo v → = ( 2 ; 0 )
P(3;1) đối xứng qua trục Oy ta được M"(-3;1)
Ta có: A(-1; 2) ∈ (d): 3x + y + 1 = 0.
⇒ (d’): 3x + y – 6 = 0.
b. ĐOy (A) = A1 (1 ; 2)
Lấy B(0 ; -1) ∈ d
Ảnh của B qua phép đối xứng trục Oy: ĐOy (B) = B(0; -1) (vì B ∈ Oy).
⇒ d1 = ĐOy (d) chính là đường thẳng A1B.
⇒ d1: 3x – y – 1 = 0.
c. Phép đối xứng tâm O biến A thành A2(1; -2).
d2 là ảnh của d qua phép đối xứng tâm O
⇒ d2 // d và d2 đi qua A2(1 ; -2)
⇒ (d2): 3x + y – 1 = 0.
d. Gọi M(-1; 0) và N(0; 2) lần lượt là hình chiếu của A(-1; 2) trên Ox, Oy.
Q(O;90º) biến N thành N’(-2; 0), biến A thành A’, biến M thành B(0; -1).
Vậy Q(O;90º) biến hình chữ nhật ONAM thành hình chữ nhật ON’A’B. Do đó A’(-2; -1) đi qua A và B, Q(O;90º) biến A thành A’(-2; -1) biến B thành B’(1; 0)
Vậy Q(O;90º) biến d thành d’ qua hai điểm A’, B’
Do đó phương trình d’ là :
Đáp án B
+ Phép đối xứng trục Oy biến điểm M(1; 1) thành điểm M’ có tọa độ là: x ' = − x = − 1 y ' = y = 1
Suy ra M’(-1; 1)
+ Phép quay tâm O góc quay biến điểm M’(-1; 1) thành điểm M’’ có tọa độ là: x ' ' = − y ' = − 1 y ' ' = x ' = − 1
Do đó M’’(-1; -1).
Đáp án B