K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

Đáp án B

Giả sử mặt phẳng ban đầu là (A’B’C’). Ta cần xác định điểm D sao cho

Xét (A’B’C’) và (C’CD) có:

C’ là điểm chung

A’B’//(C’CD) (do (A’B’BA) // (C’CD))

⇒ giao tuyến của (A’B’C’) và (C’CD) là đường thẳng m đi qua điểm C’ và song song với A’B’

⇒ m cắt d tại D’ là điểm cần tìm

Xét hình A’B’C’D’ có A’B’ // C’D’  

⇒ A’B’ = C’D’ ( a, b, c, d là các đường thẳng song song lần lượt đi qua A, B, C, D là các đỉnh của hình bình hành)

⇒ A’B’C’D’ là hình bình hành

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

Theo định lí 2 ta có: Chỉ có một và một mặt phẳng qua A' // (P). Tương tự với các điểm B', C', D'. 

Mà đề bài cho A', B', C', D' đồng phẳng

Suy ra mặt phẳng chứa A', B', C', D' song song với (P)

Do đó: A'D' // AD, B'C' // BC, AD // BC

Suy ra: A'D' // B'C' (1)

Tương tự ta có: A'B' // C'D' (2) 

(1)(2) suy ra A'B'C'D' là hình bình hành. 

10 tháng 10 2018

Giải bài 1 trang 71 sgk Hình học 11 | Để học tốt Toán 11

a) Giả sử (A’B’C’) ∩ d = D’

⇒ (A’B’C’) ∩ (C’CD) = C’D’.

+ AA’ // CC’ ⊂ (C’CD)

⇒ AA’ // (C’CD).

AB // CD ⊂ (CC’D)

⇒ AB // (CC’D)

(AA’B’B) có:

Giải bài 1 trang 71 sgk Hình học 11 | Để học tốt Toán 11 ⇒ (AA’B’B) // (C’CD).

Mà (A’B’C’) ∩ (AA’B’B) = A’B’

⇒ (A’B’C’) cắt (C’CD) và giao tuyến song song với A’B’

⇒ C’D’ // A’B’.

b) Chứng minh tương tự phần a ta có B’C’ // A’D’.

Tứ giác A’B’C’D’ có: B’C’ // A’D’ và C’D’ // A’B’

⇒ A’B’C’D’ là hình bình hành.

17 tháng 5 2018

Tận dụng kết quả giao tuyến của một mặt phẳng với hai mặt phẳng song song là hai đường thẳng song song, ta có tứ giác A’B’C’D’ là hình bình hành.

Đáp án D.

31 tháng 3 2017

a) Gọi O = AC ∩ BD; O' là trung điểm A'C' thì OO' // AA'

=> OO'// d // b mà O BD mp (b;d)

=> OO' mp(b;d). Trong mp (b;d) ( mặt phẳng xác định bởi hai đường thẳng song song); d ∩ B'O' = D' là điểm cần tìm

b) Chứng minh mp(a;d) // mp( b;c) , mặt phẳng thứ 3 (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến song song : A'D' // B'C'. Chứng minh tương tự được A'B' // D'C'. Từ đó suy ra A'B'C'D' là hình bình hành

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

loading...

Vì các cạnh bên của hình lăng trụ ABCD.A'B'C'D' đôi một song song nên AA", BB", CC" đôi một song song.

Mặt phẳng (ABCD) song song với (A"B"C"D") (do cùng song song với (A'B'C'D')) nên ABCD.A"B"C"D" là hình lăng trụ tứ giác.

10 tháng 6 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Do ABCD là hình bình hành, nên AB // DC

=> AB // (Cz, Dt) (1)

Theo giả thiết Ax // Dt nên Ax // (Cz, Dt) (2)

Từ (1) và (2) suy ra: (Ax, By) // (Cz, Dt)

b) Mặt phẳng β cắt 2 mặt phẳng song song ( Ax, By), (Cz, Dt) theo hai giao tuyến là A’B’và C’D’ nên A’B’// C’D’. (3)

Chứng minh tương tự (Ax, Dt) song song với (By,Cz).Và mặt phẳng β cắt 2 mặt phẳng song song (Ax, Dt), (By, Cz) theo hai giao tuyến là A’D’và B’C’ nên A’D’// B’C’ (4)

Từ (3) và (4) suy ra: tứ giác A’B’C’D’ là hình bình hành.

=> J là trung điểm của A’C’ ( tính chất hình bình hành).

Tứ giác AA’C’C là hình thang vì có: AA’ // CC’ ( giả thiết). Lại có, I và J lần lượt là trung điểm của AC và A’C’ nên IJ là đường trung bình của hình thang

=> IJ// AA’// CC’ ( đpcm).

c) Vì IJ là đường trung bình của hình thang ACC’A’ nên IJ = 1/2(AA’ + CC’)

IJ cũng là đường trung bình của hình thang BDD’B’: IJ = 1/2(BB’ + DD’)

Từ đây suy ra: DD’ + BB’ = AA’ + CC’

=> DD’ = AA’ + CC’ – BB’ = a + c – b

8 tháng 6 2017

Đáp án C

Trên Ax lấy điểm A’ sao cho AA’= x

Trên By lấy điểm B’ sao cho BB’ = y

Trên Cz lấy điểm C’ sao cho CC’ = z

Gọi  α  là mặt phẳng chứa tia Cz và Dt

Xét (A’B’C’) và  α  có:

C’ là điểm chung

A’B’ //  α

⇒ giao tuyến của α  và (A’B’D’) là đường thẳng d đi qua C’ và song song với A’B’

Trong mặt phẳng α , ta có: d cắt Dt tại D’

 Gọi  O = A C ∩ B D , O ' = A C ' ∩ B ' D '

Xét hình thang AA’C’C có: OO’ là đường trung bình

  ⇒ O O ' = A A ' + C C ' 2 = x + z 2

Xét tam giác BDD’D có: OO’ là đường trung bình

⇒ O O ' = D D ' + B B ' 2 ⇒ DD’ = x + z – y

27 tháng 5 2019

Giải bài 9 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Giao điểm M của CD và mp(C’AE).

Trong mp(ABCD), d cắt CD tại M, ta có:

+ M ∈ CD

+ M ∈ d ⊂ (C’AE) ⇒ M ∈ (C’AE)

Vậy M là giao điểm của CD và mp(C’AE).

b) + Trong mặt phẳng (SCD), gọi giao điểm của MC’ và SD là N.

N ∈ MC’ ⊂ (C’AE) ⇒ N ∈ (C’AE).

N ∈ SD ⊂ (SCD) ⇒ N ∈ (SCD)

⇒ N ∈ (C’AE) ∩ (SCD).

⇒ (C’AE) ∩ (SCD) = C’N.

+ (C’AE) ∩ (SCB) = C’E.

+ (C’AE) ∩ (SAD) = AN.

+ (C’AE) ∩ (ABCD) = AE

Vậy thiết diện của hình chóp cắt bởi mặt phẳng (C’AE) là tứ giác C’NAE

31 tháng 3 2017

a) Trong (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE).

b)
Do M = DC ∩ (C'AE) nên  M ∈ (SDC),.
Trong  (SDC) : MC' ∩ SD = F.
Ta có:
\(\left(C'AE\right)\cap\left(SDC\right)=FC'\)
\(\left(C'AE\right)\cap\left(SAD\right)=AF\)
\(\left(C'AE\right)\cap\left(ABCD\right)=AE\)
\(\left(C'AE\right)\cap\left(SBC\right)=C'E\)

Vậy thiết diện là AEC'F.