Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Để 2 đồ thị hàm số đã cho là hai đường thẳng song song thì
\(\left\{{}\begin{matrix}m+1=2m+1\\2m\ne3m\end{matrix}\right.\left(ĐK:m\ne-1,-\dfrac{1}{2}\right)\)
Hệ phương trình tương đương với:
\(\left\{{}\begin{matrix}m=0\\m\ne0\end{matrix}\right.\Rightarrow\text{Hệ\:phương\:trình\:vô\:nghiệm}\)
Vậy không tồn tại giả trị m để đồ thị của hai hàm số trên song song.
2. Để giao điểm hai đồ thì nằm trên trục hoành thì y = 0.
\(y=\left(m+1\right)x+2m=0\Rightarrow x=-\dfrac{2m}{m+1}\) (1)
\(y=\left(2m+1\right)x+3m=0\Rightarrow x=-\dfrac{3m}{2m+1}\) (2)
và \(m+1\ne2m+1\Rightarrow m\ne0\) (3)
Từ (1) và (2) và (3) ta tìm được m = 1.
Trả lời :
Bn Do Phuong Mai đừng bình luận linh tinh nhé !
- Hok tốt !
^_^
b: Để hai đường song song thì \(\left\{{}\begin{matrix}m^2-1=-1\\m< >2\end{matrix}\right.\Leftrightarrow m=0\)
Bài 1
ĐKXĐ: m ≠ 0 và m ≠ -1/2
a) Để hai đường thẳng cắt nhau thì:
3m ≠ 2m + 1
⇔ m ≠ 1
Vậy m ≠ 0; m ≠ -1/2 và m ≠ 1 thì hai đường thẳng đã cho cắt nhau
b) Để hai đường thẳng song song thì:
3m = 2m + 1
⇔ m = 1 (nhận)
Vậy m = 1 thì hai đường thẳng đã cho song song
Bài 2
ĐKXĐ: m ≠ 0 và m ≠ -1/2
a) Để hai đường thẳng đã cho cắt nhau thì:
3m ≠ 2m + 1
⇔ m ≠ 1
Vậy m ≠ 0; m ≠ -1/2; m ≠ 1 thì hai đường thẳng đã cho cắt nhau
b) Để hai đường thẳng trùng nhau thì:
3m = 2m + 1 và 4 - m² = 3
*) 3m = 2m + 1
⇔ m = 1 (nhận) (*)
*) 4 - m² = 3
⇔ m² = 4 - 3
⇔ m² = 1
⇔ m = 1 (nhận) hoặc m = -1 (nhận) (**)
Từ (*) và (**) ⇒ m = 1 thì hai đường thẳng đã cho trùng nhau
c) Để hai đường thẳng đã cho song song thì:
3m = 2m + 1 và 4 - m² ≠ 3
*) 3m = 2m + 1
⇔ m = 1 (nhận) (1)
*) 4 - m² ≠ 3
⇔ m² ≠ 1
⇔ m ≠ 1 (nhận) và m ≠ -1 (nhận) (2)
Từ (1) và (2) ⇒ Không tìm được m để hai đường thẳng đã cho song song
d) Để hai đường thẳng vuông góc thì:
3m.(2m + 1) = -1
⇔ 6m² + 3m + 1 = 0 (3)
Ta có:
6m² + 3m + 1 = 6.(m² + m/2 + 1/6)
= 6.(m² + 2.m.1/4 + 1/16 + 5/48)
= 6(m + 1/4)² + 5/8 > 0 (với mọi m)
⇒ (3) là vô lý
Vậy không tìm được m để hai đường thẳng đã cho vuông góc
a) (d) // (d') khi m - 3 = 1
m = 1 + 3
m = 4
Vậy m = 4 thì (d) // (d')
b) Với m = 4 ⇒ (d): y = x + 2
Đồ thị:
Hai đường thẳng trên là song song khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2+2m-2=1\\5\ne2m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\\m\ne1\end{matrix}\right.\)
\(\Leftrightarrow m=-3\)