Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Q ( O ; 180 o ) : I → I ' (0;1) , bán kính 3
I ' ' = V O ; k ( I ' ) => I”(0;2), bán kính 6
T u → ( I " ) = I ' " 1 ; 4 , bán kính 6
Phương trình đường tròn (C”): ( x − 1 ) 2 + y − 4 2 = 36
\(T_{\overrightarrow{v}}\left(M\right)=M_1\Rightarrow\left\{{}\begin{matrix}x_{M1}=3+1=4\\y_{M1}=2+5=7\end{matrix}\right.\) \(\Rightarrow M_1\left(4;7\right)\)
\(Q_{\left(0;90^0\right)}\left(M_1\right)=M_2\Rightarrow\left\{{}\begin{matrix}x_{M2}=-y_{M1}=-7\\y_{M2}=x_{M1}=4\end{matrix}\right.\)
Vậy ảnh của điểm M qua 2 phép dời hình nói trên là \(M_2\left(-7;4\right)\)
Gọi tam giác A'B'C' là ảnh của tam giác ABC qua phép biến hình trên.
(e)Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép vị tự tâm O tỉ số k = -2
+) Qua phép đối xứng qua trục Oy biến tam giác ABC thành tam giác A 1 B 1 C 1
Do đó, tọa độ A 1 - 1 ; 1 ; B 1 0 ; 3 v à C 1 - 2 ; 4 .
+) Qua phép vị tự tâm O tỉ số k = -2 biến tam giác A 1 B 1 C 1 thành tam giác A 2 B 2 C 2
Biểu thức tọa độ :
Tương tự; B 2 0 ; - 6 v à C 2 4 ; - 8
Vậy qua phép đối xứng trục Oy và phép vị tự tâm O tỉ số k = -2, biến các điểm A, B, C lần lượt thành
A 2 2 ; - 2 ; B 2 0 ; - 6 v à C 2 4 ; - 8 .
Đáp án C đúng
\(\left\{{}\begin{matrix}x_{M'}=2x_M=2.3=6\\y_{M'}=2y_M=2.\left(-2\right)=-4\end{matrix}\right.\)
\(\Rightarrow M'\left(6;-4\right)\)
Đáp án B
Q ( O ; 180 o ) : I → I ' (–1;1) , bán kính 3
T u → ( I ) = I ' 1 ; − 2 bán kính 3
Phương trình đường tròn (C”): x − 1 2 + y + 2 2 = 9
+ Chứng minh hoàn toàn tương tự ta được
b. ΔA1B1C1 là ảnh của ΔABC qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc –90º và phép đối xứng qua trục Ox.
⇒ ΔA1B1C1 là ảnh của ΔA’B’C’ qua phép đối xứng trục Ox.
⇒ A1 = ĐOx(A’) ⇒ A1(2; -3)
B1 = ĐOx(B’) ⇒ B1(5; -4)
C1 = ĐOx(C’) ⇒ C1(3; -1).
a) + Ta có: