K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 11 2020

Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;3-y\right)\\\overrightarrow{MB}=\left(4-x;-y\right)\\\overrightarrow{MC}=\left(2-x;-5-y\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\left(x-1;y+18\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+18=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-18\end{matrix}\right.\)

\(\Rightarrow M\left(1;-18\right)\)

8 tháng 4 2017

Ta có M ∈ O x  nên M(x;O) và  M A → = − 4 − x ; 0 M B → = − 5 − x ; 0 M C → = 3 − x ; 0 ⇒ M A → + M B → + M C → = − 6 − 3 x ; 0 .

Do M A → + M B → + M C → = 0 →  nên − 6 − 3 x = 0 ⇔ x = − 2 ⇒ M − 2 ; 0 .  

Chọn A.

NV
18 tháng 4 2020

22.

Đường thẳng d có 1 vtpt là \(\left(2;-3\right)\)

Do đó \(\left(-3;2\right)\) ko là 1 vtpt của d (vì ko thể biểu diễn thông qua vt (2;-3)

23.

Thay tọa độ 4 điểm vào thì điểm A(5;3) ko thỏa mãn

24.

Đường thẳng d nhận \(\left(3;5\right)\) là 1 vtpt nên nhận \(\left(5;-3\right)\) là 1 vtcp

\(\Rightarrow\) d có hệ số góc là \(-\frac{3}{5}\)

Đáp án C sai

14 tháng 7 2018

Gọi d → = x ; y .

 Từ giả thiết, ta có hệ − 2 x + 3 y = 4 4 x + y = − 2 ⇔ x = − 5 7 y = 6 7 .  

Chọn B.

10 tháng 1 2020

a, M và N có hoành độ x=2 và x=5 nên thay vào pt y=x-1 ta được:

\(\left\{{}\begin{matrix}yM=2-1=1\\yN=5-1=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}M\left(2;1\right)\\N\left(5;4\right)\end{matrix}\right.\)

b, \(\overrightarrow{MN}=\left(5-2;4-1\right)=\left(3;3\right)\)

Vì: \(\frac{3}{2}=\frac{3}{2}\)

Nên vecto MN cùng phương với vecto u

6 tháng 12 2021

a, \(\overrightarrow{BA}=\left(0-4;-2-1\right)\)

           =\(\left(-4;-3\right)\)

6 tháng 12 2021

có bt lm câu b ko bnthanghoa

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có:  \(\overrightarrow {AB}  = (3 - 1;4 - 2) = (2;2)\) và \(\overrightarrow {CD}  = (6 - ( - 1);5 - ( - 2)) = (7;7)\)

b) Dễ thấy: \((2;2) = \frac{2}{7}.(7;7)\)\( \Rightarrow \overrightarrow {AB}  = \frac{2}{7}.\overrightarrow {CD} \)

Vậy hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng phương.

c) Ta có: \(\overrightarrow {AC}  = ( - 1 - 1; - 2 - 2) = ( - 2; - 4)\) và \(\overrightarrow {BE}  = (a - 3;1 - 4) = (a - 3; - 3)\)

Để \(\overrightarrow {AC} \) và \(\overrightarrow {BE} \) cùng phương thì \(\frac{{a - 3}}{{ - 2}} = \frac{{ - 3}}{{ - 4}}\)\( \Leftrightarrow a - 3 =  - \frac{3}{2}\)\( \Leftrightarrow a = \frac{3}{2}\)

Vậy \(a = \frac{3}{2}\) hay \(E\left( {\frac{3}{2};1} \right)\) thì hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BE} \) cùng phương

d)

Cách 1:

Ta có: \(\overrightarrow {BE}  = \left( {\frac{3}{2} - 3; - 3} \right) = \left( { - \frac{3}{2}; - 3} \right)\) ; \(\overrightarrow {AC}  = ( - 2; - 4)\)

\( \Rightarrow \overrightarrow {BE}  = \frac{3}{4}.\overrightarrow {AC} \)

Mà \(\overrightarrow {AE}  = \overrightarrow {AB}  + \overrightarrow {BE} \) (quy tắc cộng)

\( \Rightarrow \overrightarrow {AE}  = \overrightarrow {AB}  + \frac{3}{4}.\overrightarrow {AC} \)

Cách 2:

Giả sử \(\overrightarrow {AE}  = m\,.\,\overrightarrow {AB}  + n\,.\,\overrightarrow {AC} \)(*)

Ta có:  \(\overrightarrow {AE}  = \left( {\frac{1}{2}; - 1} \right)\), \(m\,.\,\overrightarrow {AB}  = m\left( {2;2} \right) = (2m;2m)\), \(n\,.\,\overrightarrow {AC}  = n( - 2; - 4) = ( - 2n; - 4n)\)

Do đó (*) \( \Leftrightarrow \left( {\frac{1}{2}; - 1} \right) = (2m;2m) + ( - 2n; - 4n)\)

\(\begin{array}{l} \Leftrightarrow \left( {\frac{1}{2}; - 1} \right) = (2m - 2n;2m - 4n)\\ \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{2} = 2m - 2n\\ - 1 = 2m - 4n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\n = \frac{3}{4}\end{array} \right.\end{array}\)

Vậy \(\overrightarrow {AE}  = \overrightarrow {AB}  + \frac{3}{4}.\overrightarrow {AC} \)

23 tháng 11 2021

A nhé

hihhihihiihihihhiihhiihihihih