K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

I C M A D B

Do \(\widehat{AIB}=90^0\Rightarrow\widehat{ACB}=45^0\) hoặc \(\widehat{ACB}=135^0\Rightarrow\widehat{ACD}=45^0\Rightarrow\Delta ACD\) vuông cân tại D nên DA=DC

Hơn nữa IA=IC => \(DI\perp AC\Rightarrow\) đường thẳng AC thỏa mãn điều kiện AC qua điểm M và AC vuông góc ID.

Viết phương trình đường thẳng AC : \(x-2y+9=0\)

Gọi \(A\left(2a-9;a\right)\in AC\). Do \(DA=\sqrt{2}d\left(D,AC\right)=2\sqrt{10}\) nên

\(\sqrt{\left(2a-8\right)^2+\left(a+1\right)^2}=2\sqrt{10}\Leftrightarrow a^2-6a+5=0\)

                                                  \(\Leftrightarrow\begin{cases}a=1\Rightarrow A\left(-7;1\right)\\a=5\Rightarrow A\left(1;5\right)\end{cases}\)

Theo giả thiết đầu bài \(\Rightarrow A\left(1;5\right)\)

Viết phương trình đường thẳng DB : \(x+3y+4=0\). Gọi \(B\left(-3b-4;b\right)\)

Tam giác IAB vuông tại I nên : \(\overrightarrow{IA.}\overrightarrow{IB}=0\Leftrightarrow3\left(-3b-2\right)+4\left(b-1\right)=0\Leftrightarrow b=-2\Rightarrow B\left(2;-2\right)\)

Đáp số \(A\left(1;5\right);B\left(2;-2\right)\)

NV
21 tháng 3 2021

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\x-2y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(0;-1\right)\)

Gọi vtpt của đường thẳng CM (cũng là đường cao kẻ từ C) có tọa độ \(\left(a;b\right)\)

H là chân đường cao kẻ từ B

\(cos\widehat{HBC}=\dfrac{\left|1.1+1.\left(-2\right)\right|}{\sqrt{1^2+1^2}.\sqrt{1^2+\left(-2\right)^2}}=\dfrac{1}{\sqrt{10}}\)

\(\Rightarrow cos\widehat{MCB}=cos\widehat{HBC}=\dfrac{1}{\sqrt{10}}=\dfrac{\left|a+b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+1^2}}\)

\(\Leftrightarrow\sqrt{a^2+b^2}=\sqrt{5}\left|a+b\right|\Leftrightarrow a^2+b^2=5\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+5ab+2b^2=0\Leftrightarrow\left(a+2b\right)\left(2a+b\right)=0\)

Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(2;-1\right)\\\left(1;-2\right)\end{matrix}\right.\) (trường hợp (1;-2) loại do song song BH)

\(\Rightarrow\) Phương trình đường cao kẻ từ C:

\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\2x-y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(...\right)\)

Gọi N là trung điểm BC \(\Rightarrow\) tọa độ N

Tam giác ABC cân tại A \(\Rightarrow\) AN là trung tuyến đồng thời là đường cao

\(\Rightarrow\) Đường thẳng AN vuông góc BC \(\Rightarrow\) nhận (1;-1) là 1 vtpt và đi qua N

\(\Rightarrow\) Phương trình AN

Đường thẳng AB vuông góc CM nên nhận (1;2) là 1 vtpt

\(\Rightarrow\) Phương trình AB (đi qua B và biết vtpt)

\(\Rightarrow\) Tọa độ A là giao điểm AB và AN

26 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+2x-m+1=x+1\)

\(\Leftrightarrow x^2+x-m=0\left(1\right)\)

\(\left(d\right),\left(P\right)\) cắt nhau tại hai điểm phân biệt khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt 

\(\Leftrightarrow\Delta=4m+1>0\Leftrightarrow m>-\dfrac{1}{4}\)

Phương trình \(\left(1\right)\) có hai nghiệm phân biệt \(x=\dfrac{-1\pm\sqrt{4m+1}}{2}\)

\(x=\dfrac{-1+\sqrt{4m+1}}{2}\Rightarrow y=\dfrac{1+\sqrt{4m+1}}{2}\Rightarrow A\left(\dfrac{-1+\sqrt{4m+1}}{2};\dfrac{1+\sqrt{4m+1}}{2}\right)\)

\(x=\dfrac{-1-\sqrt{4m+1}}{2}\Rightarrow y=\dfrac{1-\sqrt{4m+1}}{2}\Rightarrow B\left(\dfrac{-1-\sqrt{4m+1}}{2};\dfrac{1-\sqrt{4m+1}}{2}\right)\)

\(AB=8\Leftrightarrow\sqrt{8m+2}=8\Leftrightarrow m=\dfrac{31}{4}\left(tm\right)\)

26 tháng 12 2020

2.

a, \(AB=2\sqrt{5},BC=5\sqrt{10},CA=\sqrt{170}\)

\(AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}=\dfrac{65}{2}\Rightarrow AM=\dfrac{\sqrt{130}}{2}\)

b, \(\left\{{}\begin{matrix}x_D-4-2\left(x_D-2\right)+4\left(x_D+3\right)=0\\y_D-3-2\left(y_D-7\right)+4\left(y_D+8\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-4\\y_D=-\dfrac{14}{3}\end{matrix}\right.\)

\(\Rightarrow D\left(-4;-\dfrac{14}{3}\right)\)

c, \(\left\{{}\begin{matrix}\overrightarrow{AA'}=\left(x_{A'}-4;y_{A'}-3\right)\\\overrightarrow{BC}=\left(-5;-15\right)\\\overrightarrow{BA'}=\left(x_{A'}-2;y_{A'}-7\right)\end{matrix}\right.\)

\(AA'\perp BC\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AA'}.\overrightarrow{BC}=0\left(1\right)\\\overrightarrow{BA'}=k\overrightarrow{BC}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-5\left(x_{A'}-4\right)-15\left(y_{A'}-3\right)=0\Leftrightarrow x_{A'}+3y_{A'}=13\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x_{A'}-2=-5k\\y_{A'}-7=-15k\end{matrix}\right.\Leftrightarrow3x_{A'}-y_{A'}=-1\)

\(\left\{{}\begin{matrix}x_{A'}+3y_{A'}=13\\3x_{A'}-y_{A'}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_{A'}=1\\y_{A'}=4\end{matrix}\right.\Rightarrow A'\left(1;4\right)\)