K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
5 tháng 7 2021

Giả sử tồn tại thời điểm mà không có hai kì thủ nào có số trận đấu bằng nhau, khi đó số trận đấu của các kì thủ là: 

\(0,1,2,3,...,9\).

Khi đó có kì thủ đã đấu với cả \(9\)kì thủ còn lại, giả sử đó là \(A_1\)đã đấu với \(A_2,A_3,...,A_{10}\), nhưng lại có kì thủ chưa đấu với kì thủ \(A_1\)(mâu thuẫn).

Do đó ta có đpcm. 

21 tháng 6 2016

Gọi người đội 1 là x (người) ,x là số tự nhiên 

Gọi số người đội 2 là y (người) , y là số tự nhiên 

=> tổng số ván cờ là xy 

Theo bài ra ta có PT 

xy = x^2 + 2y 

=> y.(x - 2 ) = x^2 

=> y = x^2/ ( x-2 ) 

=> y = (x^2 - 4 + 4 )/ (x-2) 

=> y = x+2 + 4/(x - 2 ) 

do x, y là các số tự nhiên => (x-2) là ước của 4 

=> x-2 = 1; 2 ; 4 

=> x = 3, thì y = 9.; x = 4 thì y = 8; x = 6 thì y = 9

15 tháng 9 2017

Toán giải bằng cách lập PT: loại hai đội cùng thi đấu, mỗi người của đội này gặp một người của đội kia? | Yahoo Hỏi & Đáp

24 tháng 4 2020

Gọi số cầu thủ đội 1 và 2 lần lượt là: a và b

1 cầu thủ đội 1 đấu với 1 cầu thủ đội 2, số trận là b

số cầu thủ đội 1 là a

=> tổng số ván đấu là: ab

=> ab=4(a+b)

=> ab chia hết cho 2

Mà ít nhất 1 đội có số cầu thủ lẻ

=> đội còn lại có số cầu thủ chẵn và chia hết cho 4, giả sử độ đó có a cầu thủ ⇒b là số lẻ 

Ta có: ab=4(a+b)

⇔a(b-4)-4(b-4)=16

⇔(a-4)(b-4)=16

Vì a,b∈Z

⇒ a-4,b-4∈Z

⇒a-4,b-4 là nghiệm nguyên của 16

mà a chia hết cho 4 nên a-4 chia hết cho 4 ta xét các trương hợp:

+) \(\hept{\begin{cases}a-4=4\\b-4=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=8\\b=8\end{cases}}\)

(không thoả mãn b lẻ)

+ ) \(\hept{\begin{cases}a-4=8\\b-4=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=12\\b=6\end{cases}}\)

(không thoả mãn b lẻ)

+)\(\hept{\begin{cases}a-4=16\\b-4=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=20\\b=5\end{cases}}\)(thoả mãn)

Vậy mỗi đội có 20 và 5 cầu thủ 

12 tháng 7 2016

Thầy giáo cho bài khó v

12 tháng 2 2016

Gọi số đối thủ đội 1 là x,đội 2 là y (người)

Ta có 1 người đội 1 sẽ đánh y ván với tất cả đối thủ đội 2

nên số ván đấu sẽ là xy (ván)

Ta có xy=4(x+y)

<=> (x-4)(y-4)=16

Mà do số đấu thủ 1 trong 2 đội là số lẻ nên 

ko mất tính tổng quát giả sử y lẻ rồi giải phương trình nghiệ nguyên là ra ngay

12 tháng 2 2016

 Gọi người đội 1 là x (người) ,x là số tự nhiên 

Gọi số người đội 2 là y (người) , y là số tự nhiên 

=> tổng số ván cờ là xy 

Theo bài ra ta có PT 

xy = x^2 + 2y 

=> y.(x - 2 ) = x^2 

=> y = x^2/ ( x-2 ) 

=> y = (x^2 - 4 + 4 )/ (x-2) 

=> y = x+2 + 4/(x - 2 ) 

do x, y là các số tự nhiên => (x-2) là ước của 4 

=> x-2 = 1; 2 ; 4 

=> x = 3, thì y = 9.; x = 4 thì y = 8; x = 6 thì y = 9

22 tháng 1 2020

Gọi a và b lần lượt là số trận đấu thủ ở đội trường A và trường B, với \(a,b\in\)\(\mathbb{N^*}\)

Theo đề bài, ta có: \(ab=2\left(a+b\right)\Leftrightarrow\left(a-2\right)\left(b-2\right)=4\)

Nhận xét: Do \(a,b\in\)\(\mathbb{N^*}\) \(\Rightarrow a-2\in\)\(​​​​\mathbb{Z}\); \(b-2\)\(\in\)\(\mathbb{Z}\)

Lập bảng:

\(a-2\) \(-4\) \(-2\) \(-1\) \(1\) \(2\) \(4\)
\(b-2\) \(-1\) \(-2\) \(-4\) \(4\) \(2\) \(1\)
\(a\) \(-2\) \(0\) \(1\) \(3\) \(4\) \(6\)
\(b\) \(1\) \(0\) \(-2\) \(6\) \(4\) \(3\)

KL: \(a=4,b=4\) hoặc \(a=3,b=6\) hoặc \(a=6,b=3\)