K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

Đáp án :C

Nhà trường có hai cách chọn:

Trường hợp 1. Chọn 1 học sinh nam.  có 307 cách

Trường hợp 2. Chọn 1 học sinh nữ. Có 326 cách

Vậy, có 307 + 326 = 633 cách chọn một học sinh tham dự cuộc thi trên.

5 tháng 5 2018

Nếu chọn một học sinh nam có 280 cách.

Nếu chọn một học sinh nữ có 325 cách.

Theo qui tắc cộng, ta có 280 +  325 = 605 cách chọn.

Chọn đáp án D.

25 tháng 5 2018

Chọn B.

Số phần tử của không gian mẫu:

Gọi A là biến cố “nhóm được chọn có cả nam và nữ, đồng thời mỗi khối có 1 học sinh nam

⇒ số phần tử của biến cố A là:

.

20 tháng 11 2018

Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh từ 13 học sinh.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12

Ta có các trường hợp thuận lợi cho biến cố A là: 

                 ●   Trường hợp 1. Chọn 1 học sinh khối 11; 1 học sinh nam khối 12 và 1 học sinh nữ khối 12 nên có  cách.

                 ●   Trường hợp 2. Chọn 1 học sinh khối 11; 2 học sinh nữ khối 12 có  cách.

                 ●   Trường hợp 3. Chọn 2 học sinh khối 11; 1 học sinh nữ khối 12 có  cách.

Suy ra số phần tử của biến cố A là 

Vậy xác suất cần tính 

Chọn D.

24 tháng 7 2017

a) Theo quy tắc cộng có: 23 +17 = 40 cách chọn một học sinh tham gia cuộc thi môi trường. Vì vậy chọn đáp án C

Nhận xét: học sinh có thể dộc không kĩ đề: chọn 1 học sinh nữ trong 23 học sinh nữ nên có 23 cách chọn (phương án A); hoặc chọn một học sinh nam trong số 17 học sinh nam nên có 17 cách chọn (phương án B); hoặc nhầm sang quy tắc nhân nên có 23 * 17 = 391 cách chọn 

Đáp án đúng C

21 tháng 12 2022

Tổng h/s lớp `11A` là: `33+13=46` h/s

Số cách chọn ra `1` h/s đi dự Đại hội của trường là tổ hợp chập `1` của `46`

   `=>C_46 ^1=46` cách

11 tháng 4 2018

Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.( chú ý  mỗi khối đều có ít hơn 8 học sinh).

Số cách chọn 8 học sinh từ hai khối là:  .

Số cách chọn 8 học sinh bất kì là:  

Số cách chọn thỏa yêu cầu bài toán: 

Chọn D.

22 tháng 5 2019

Đáp án D

Phương pháp:

+ )   P ( A )   =   n ( A ) n ( Ω )  

+ P(A) = 1P( A ) 

Cách giải: Số phần tử của không gian mẫu: n ( Ω )   =   C 18 6  

Gọi A: “Mỗi khối có ít nhất 1 học sinh được chọn.”

22 tháng 7 2019

Đáp án B.

Số cách chọn 5 em học sinh từ 8 học sinh trên là cách

- Để chọn 5 em thỏa mãn bài ra, ta xét các trường hợp sau

+) 1 nam khối 11, 1 nữ khối 12 và 3 nam khối 12 có cách

+) 1 nam khối 11, 2 nữ khối 12 và 2 nam khối 12 có cách

+) 2 nam khối 11, 1 nữ khối 12 và 2 nam khối 12 có cách

+) 2 nam khối 11, 2 nữ khối 12 và 1 nam khối 12 có cách

- Số cách chọn 5 em thỏa mãn bài ra là:

cách

Vậy xác suất cần tính là: