K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2023

a) Ta có: I là trung điểm AB

\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{-1+3}{2}=1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{-2+2}{2}=0\end{matrix}\right.\)

\(\Rightarrow I\left(1;0\right)\)

b) Ta có: G là trọng tâm tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{-1+3+4}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-2+2+1}{3}=\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow G\left(2;\dfrac{1}{3}\right)\)

15 tháng 12 2021

a) Gọi G(xG;yG)

xG=\(\dfrac{X_A+X_B+X_C}{3}=\dfrac{3-2+1}{3}\)=\(\dfrac{2}{3}\)

yG=\(\dfrac{Y_A+Y_B+Y_C}{3}=\dfrac{3+4+5}{3}=4\)

⇒G(\(\dfrac{2}{3};4\))

a: vecto AC=(4;-3)

=>VTPT là (3;4)

PT AC là:

3(x-5)+4(y-0)=0

=>3x+4y-15=0

b: vecto AB=(-2;-2)=(1;1)

=>VTPT là (-1;1)

Phương trình AB là:

-1(x-1)+1(y-3)=0

=>-x+1+y-3=0

=>-x+y-2=0

=>x-y+2=0

=>M(x;x+2)

MC=5

=>MC^2=25

=>(5-x)^2+(0-x-2)^2=25

=>(x-5)^2+(x+2)^2=25

=>x^2-10x+25+x^2+4x+4=25

=>2x^2-6x+29-25=0

=>2x^2-6x+4=0

=>x=2 hoặc x=1

=>M(2;4) hoặc M(1;3)

NV
26 tháng 12 2022

Do C thuôc trục hoành nên tọa độ có dạng \(C\left(c;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c+2;-4\right)\\\overrightarrow{BC}=\left(c-8;-4\right)\end{matrix}\right.\)

Do tam giác ABC vuông tại C \(\Rightarrow\overrightarrow{AC}.\overrightarrow{BC}=0\)

\(\Rightarrow\left(c+2\right)\left(c-8\right)+16=0\)

\(\Rightarrow c^2-6c=0\Rightarrow\left[{}\begin{matrix}c=0\\c=6\end{matrix}\right.\)

Vậy có 2 điểm C thỏa mãn là \(C\left(0;0\right)\) và \(C\left(6;0\right)\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:

\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}}  = 5\)

b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)