Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vị trí hai vân sáng trùng nhau thỏa mãn
\(k_1 i_1 = k_2 i_2 \)
<=> \(k_1 \lambda_1 = k_2 \lambda_2\)
<=> \(\frac{k_1}{k_2}= \frac{\lambda_2}{\lambda_1} = \frac{660}{500}= \frac{33}{25}.\)(*)
Vị trí hai vân sáng trùng nhau đầu tiên (trừ vân trung tâm) ứng với \(k_1;k_2\) nhỏ nhất thỏa mãn (*) tức là \(k_1 = 33; k_2 = 25.\)
Thay \(k_1 =33=> \Delta x_{min}= 33.\frac{500.10^{-3}.1,2}{2}=9,9mm.\)
Với \(\lambda = 500nm = 500,10^{-3}\mu m; a = 2mm; D = 1,2m.\)
Phương pháp:
Sử dụng lí thuyết về bài toán trùng nhau của 2 bức xạ trong giao thoa sóng ánh sáng
Hai bức xạ trùng nhau: x1 = x2 <=> k1.λ1 = k2.λ2
Cách giải:
+ Ta có: i1 = 0,6 mm và i2 = 0,78 mm
+ Vị trí hai bức xạ trùng nhau:
+ Số vân sáng của λ 1 = 500 nm trên đoạn MN là:
có 10 giá trị
+ Số vân sáng của λ 2 = 650 nm trên đoạn MN là:
có 8 giá trị
+ Số vân sáng trùng của hai bức xạ trên đoạn MN là:
có 1 giá trị
+ Số vân sáng quan sát được là: N = N1 + N2 – N0 = 17
Chọn B
Đáp án B
+ Khoảng vân giao thoa của các ánh sáng đơn sắc
+ Ta xét các tỉ số:
x M i 1 = 3 , 3 x M i 1 = 13 , 3 → trên đoạn MN có các vị trí cho vân sáng từ bậc 4 đến bậc 13 của bức xạ λ1
x M i 2 = 2 , 56 x M i 2 = 10 , 25 → trên đoạn MN có các vị trí cho vân sáng từ bậc 3 đến bậc 10 của bức xạ λ2
+ Điều kiện trùng nhau của hai hệ vân
λ 1 λ 2 = k 2 k 1 = 10 13 → trên đoạn MN có một vị trí trùng nhau của hệ hai vân sáng, do đó số vân sáng quan sát được là
n
=
10
+
8
-
1
=
17
(ta trừ một là do hai vân sáng trùng nhau ta tính là một vân sáng)
Đáp án C
+ Khoảng vân giao thoa của hai bức xạ
;
+ Các vị trí hệ hai vân sangs trùng nhau
mm cứ sau mỗi khoảng
lại có một vị trí trùng nhau của hệ hai vân sang.
Xét tỉ số
=> có hai vân sáng trùng nhau.
Chọn C
Vậy trên đoạn MN có 3 vị trí vân sáng trùng nhau (7.2, 14.4, 21.6)
Chọn D
Trong khoảng đó (kể cả 2 đầu) có 5 vân của λ1, 4 vân của λ2, trừ đi 2 vân 2 đầu tính 2 lần => có 7 vân