K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Điều kiện đề chưa đủ để tính bán kính. Bạn coi lại.

Xét ΔABC và ΔADB có

góc ABC=góc ADB

góc BAC chung

=>ΔABC đồng dạng vơi ΔADB

=>AB/AD=AC/AB

=>AB^2=AD*AC

a: Xét ΔABC và ΔADB có

\(\widehat{ABC}=\widehat{ADB}\)

\(\widehat{BAC}\) chung

Do đó: ΔABC\(\sim\)ΔADB

Suy ra: AB/AD=AC/AB

hay \(AB^2=AD\cdot AC\)

Điểm H ở đâu vậy bạn?

3 tháng 3 2022

H thuộc AO nha

 

8 tháng 8 2017

A B C D

Ta có:

\(S_{ABC}=pr;S_{ACD}=\frac{AC+CD+AD}{2}.r_1;S_{ABD}=\frac{AB+BD+AD}{2}.r_2\)

Vì AD là tia phân giác \(\widehat{BAC}\)nên đường cao từ D đến AB và AC là bằng nhau.

\(\Rightarrow\hept{\begin{cases}S_{ACD}=\frac{S_{ABC}}{3}\\S_{ABD}=\frac{2S_{ABC}}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{AC+CD+AD}{2}.r_1=\frac{pr}{3}\\\frac{AB+BD+AD}{2}.r_2=\frac{2pr}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}AC+CD+AD=\frac{2pr}{3r_1}\left(1\right)\\AB+BD+AD=\frac{4pr}{3r_2}\left(2\right)\end{cases}}\)

Lấy (1) + (2) ta dược

\(AC+CD+AB+BD+2AD=\frac{2pr}{3r_1}+\frac{4pr}{3r_2}\)

\(\Leftrightarrow2p+2AD=\frac{2pr}{3r_1}+\frac{4pr}{3r_2}\)

\(\Leftrightarrow AD=\frac{pr}{3r_1}+\frac{2pr}{3r_2}-p=\frac{pr}{3}\left(\frac{1}{r_1}+\frac{2}{r_2}\right)-p\)

8 tháng 8 2017

Câu 2 ai vẽ hộ cái hình đi

a: góc OBA+góc OCA=180 độ

=>OBAC nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>AH*AO=AB^2

Xét ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng dạng với ΔAEB

=>AB^2=AD*AE=AH*AO

Chọn C

20 tháng 1 2023

Đáp án=> C

21 tháng 2 2017

minh ko biết

21 tháng 2 2017

mình không biết đâu chỉ có thánh mới giải được

17 tháng 11 2023

a: Xét ΔMTA và ΔMBT có

\(\widehat{MTA}=\widehat{MBT}\left(=\dfrac{1}{2}sđ\stackrel\frown{AT}\right)\)

\(\widehat{TMA}\) chung

Do đó: ΔMTA đồng dạng với ΔMBT

=>\(\dfrac{MT}{MB}=\dfrac{MA}{MT}\)

=>\(MT^2=MA\cdot MB\)

b: \(MT^2=MA\cdot MB\)

=>\(MA\cdot MB=20^2=400\)

=>\(MA=\dfrac{MT^2}{MB}=\dfrac{400}{50}=8\left(cm\right)\)

MA+AB=MB

=>AB+8=50

=>AB=42(cm)

=>R=42/2=21(cm)