Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\angle ABO+\angle ACO=90+90=180\Rightarrow ABOC\) nội tiếp
Vì AB,AC là tiếp tuyến \(\Rightarrow\Delta ABC\) cân tại A và AO là phân giác \(\angle BAC\)
\(\Rightarrow AO\bot BC\)
b) Ta có: \(\angle OME=\angle OBE=90\Rightarrow OMBE\) nội tiếp
\(\Rightarrow\angle OBM=\angle OEM\)
c) Vì \(\Delta ABC\) cân tại A và AO là phân giác \(\angle BAC\)
\(\Rightarrow H\) là trung điểm BC
Tương tự như câu b \(\Rightarrow\angle OFM=\angle OCM\)
mà \(\angle OBM=\angle OCM\) (\(\Delta OBC\) cân tại O)
\(\Rightarrow\angle OFM=\angle OEM\Rightarrow\Delta OFE\) cân tại O có \(OM\bot FE\)
\(\Rightarrow\) M là trung điểm FE
Xét \(\Delta HFM\) và \(\Delta BEM:\) Ta có: \(\left\{{}\begin{matrix}MH=MB\\MF=ME\\\angle HMF=\angle BME\end{matrix}\right.\)
\(\Rightarrow\Delta HFM=\Delta BEM\left(c-g-c\right)\Rightarrow\angle HFM=\angle BEM\)
\(\Rightarrow HF\parallel BE\Rightarrow HF\parallel AB\) mà H là trung điểm BC
\(\Rightarrow F\) là trung điểm BC
a) OA vuông góc BC do tam giác ABC cân ( t ính chất tiếp tuyến cắt nhau ) . Có OA phân giác nên là đồng thời là đường cao
b) Tứ giác AOBE nột tiếp vì góc ABO= 90 ( tiếp tuyến ), góc AEO=90 ( đường kính đi qua trung điểm nên vuông góc vs dây ấy) => đpcm
c) Có OA.AF= AB2 ( hệ thức lượng ) có tam giác ABM đồng dạng tam giác ANM ( góc A chung, góc ABM= góc BNM ( góc nt và góc tạo bởi tiếp tuyến dây c ung)
==> AM.AN=AB^2 . Vậy có đpcm
d) Có AM/AN= AM/AF
=> Tam giác MAF đồng dạng tam giác OAN ( cạnh góc cạnh) ==> góc M = góc O. Mà góc AMF+ NMF=180 nên góc AON +NMF=180
Vậy có đpcm
Em kiểm tra lại đề câu d, điểm A đã cố định nên đề ko thể là xác định vị trí A được, chỉ có xác định vị trí d qua O sao cho diện tích tam giác kia min thôi
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp đường tròn đường kính OA(1)
ΔOMN cân tại O
mà OH là trung tuyến
nên OH vuông góc MN
=>OH vuông góc HA
=>H nằm trên đường tròn đường kính OA(2)
Từ (1), (2) suy ra O,H,B,A,C cùng nằm trên đường tròn đường kính AO
b: Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
Xét ΔKCO vuông tại C và ΔKHA vuông tại H có
góc K chung
=>ΔKCO đồng dạng với ΔKHA
=>KC/KH=KO/KA
=>KC*KA=KO*KH
c: góc ABE+góc OBE=90 độ
góc CBE+góc OEB=90 độ
mà góc OBE=góc OEB
nên góc ABE=góc CBE
=>BE là phân giác của góc ABC
mà AE là phan giác góc BAC
nên E cách đều AB,BC,AC
a: góc ABO+góc ACO=90+90=180 độ
=>ABOC nội tiếp đường tròn đường kính OA
Tâm là trung điểm của OA
Bán kính là OA/2
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>AO vuông góc BC
c: Xét ΔAMB và ΔABN có
góc AMB=góc ABN
góc MAB chung
=>ΔAMB đồng dạng với ΔABN
=>AM/AB=AB/AN
=>AB^2=AM*AN=AH*AO
gọi E là giao điểm OA với đường tròn
OE vuông góc BC => E là điểm chính giữa cung BC =>sđEC=sđEB
xét đường tròn (O) có MKC là góc tạo bởi tiếp tuyến và dây
MKC=(sdCM-sdMB)/2=(sdCE+sdEM-sdMB)/2
=(sdEB+sdEM-sdMB)/2=(sdEM+sdEM)/2
=2.sdEM/2=sd EM
mà EOM=sdEM (góc ở tâm chắn cung EM )
=>MKC=EOM=>MKH=HOM
Mà 2 góc này cùng chắn HM=>tứ giác MHOK nội tiếp
=>OMK=OHK
tiếp tuyến AB và AC cắt nhau tại A =>OA là phân giác COB
mà tg COB cân (OB=OC=R)=>OA đồng thời là đường cao
=>OA vuông góc với BC=>OHK=90=>OMK=90
=>tgOMK vuông=>đpcm
1: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
2: Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM