K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

Gọi số cần tìm có dạng a b c d ¯  với  a , b , c , d ∈ A = 0 , 1 , 2 , 3 , 4 , 5 .

Vì a b c d ¯  là số chẵn  ⇒    d = 0 , 2 , 4 .

TH1. Nếu d= 0,  số cần tìm là a b c 0 ¯ .  Khi đó:

a được chọn từ tập A \ 0  nên có 5 cách chọn.

b được chọn từ tập A \ 0 ,    a  nên có 4 cách chọn.

c được chọn từ tập A \ 0 ,    a ,    b  nên có 3 cách chọn.

Như vậy, ta có 5.4.3 =  60 số có dạng  a b c 0 ¯ .

TH2. Nếu d ∈ 2 , 4 ⇒    d  có 2 cách chọn.

Khi đó, a có 4 cách chọn (khác 0 và d),

b có 4 cách chọn và c có 3 cách chọn.

Như vậy, ta có 2.4.4.3 = 96 số cần tìm như trên.

Vậy có tất cả 60 +96 = 156 số cần tìm.

Chọn đáp án A.

5 tháng 10 2017

Gọi số cần tìm có dạng a b c d ¯  với  a , b , c , d ∈ A = 0 , 1 , 2 , 3 , 4 , 5 .

Vì a b c d ¯  là số chẵn  ⇒    d ∈ 0 , 2 , 4 .

TH1. Nếu  d = 0 số cần tìm là a b c 0 ¯ .  Khi đó: A \ 0 ,    a ,    b

a được chọn từ tập A \ 0  nên có 5 cách chọn.

b được chọn từ tập A \ 0 ,    a  nên có 4 cách chọn.

c được chọn từ tập  nên có 3 cách chọn.

Như vậy, ta có 5.4.3 = 60  số có dạng  a b c 0 ¯ .

TH2. Nếu d = 2 , 4 ⇒    d :  có 2 cách chọn.

Khi đó, a có 4 cách chọn (khác 0 và d), b có 4 cách chọn và c có 3 cách chọn.

Như vậy, ta có 2.4.4.3 =  96 số

Vậy có tất cả 60 + 96 = 156 số

Chọn đáp án A.

15 tháng 8 2021

Nguyễn Việt Lâm 

15 tháng 8 2021

Số cần tìm có dạng \(\overline{abcd}\left(a,b,c,d\in\left\{0;3;4;5;6;7\right\}\right)\)

TH1: \(d=0\)

a có 5 cách chọn

b có 4 cách chọn

c có 3 cách chọn

\(\Rightarrow\) Có \(3.4.5=60\) cách lập.

TH2: \(d\ne0\)

d có 2 cách chọn

a có 4 cách chọn

b có 4 cách chọn

c có 3 cách chọn

\(\Rightarrow\) Có \(2.3.4.4=96\) cách lập.

Vậy có \(96+60=156\) cách lập.

28 tháng 10 2019

Vì có 3 số lẻ là 1,3,5, nên ta tạo được 6 cặp số kép: 13;31;15;51;35;53

Gọi A là tập các số gồm 4 chữ số được lập từ X={0;13;2;4;6}.

Gọi A­1,A2,A3 tương ứng là số các số tự nhiên lẻ gồm 4 chữ số khác nhau được lập từ các chữ số của tập X  và 13 đứng ở vị trí thứ nhất, thứ hai và thứ ba.

Ta có:  

Nên 

Vậy số các số cần lập là: 6.60=360  số.

Chọn A.

NV
3 tháng 1 2022

a. Gọi chữ số cần lập là \(\overline{abcd}\)

TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)

a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)

\(\Rightarrow4.8.8.7\) số

Tổng cộng: \(A_9^3+4.8.8.7=...\)

b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách

Hoán vị 3 chữ số 0,1,2: có \(3!\) cách

Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách

Ta đi tính số trường hợp 0 đứng đầu:

Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách

Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách

Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số

17 tháng 2 2022

Giải

a, Có 6 chữ số khác nhau

Gọi số cần tìm là \(\overline{abcdef}\)

a có 5 cách chọn ( \(a\ne0\))

\(\overline{bcedf}\)có 5! cách chọn 

=> Có tất cả 5.5! = 600 (số)

Vậy có 600 số có 6 chữ số khác nhau

b, Gọi số có 4 chữ số cần tìm là \(\overline{abcd}\)

Vì \(\overline{abcd}\) là số chẵn nên d \(\in\left(0,2,4\right)\)

TH1: d=0

\(\overline{abc}\) có \(A_5^3\) cách chọn => 60 cách chọn

TH2 : d=(2,4) -> có 2 cách chọn 

a có 4 cách chọn ( a khác 0,d)

b có 4 cách chọn ( b khác a,d)

c có 3 cách chọn ( c khác a,b,d)

=> 4.4.3.2=96 số

Nên kết hợp hai trường hợp ta có 60+96=156 ( số)

Vậy có 156 số có 4 chữ số chẵn khác nhau

17 tháng 2 2022

c, Gọi số có 3 chữ số khác nhau là \(\overline{abc}\)

TH1:

 a = {4,5} -> có 2 cách

\(\overline{bc}\) có \(A_4^2\) cách chọn

=> Có 2.\(A_4^2\)=2.12=24 số

TH2: a=3 -> có 1 cách 

b={1,2,4,5} -> có 4 cách

c có 4 cách ( c khác a,b)

=> 4.4=16 (số)

TH3: a=3 -> có 1 cách chọn

b=0-> có 1 cách chọn

c={1,2,4,5} -> có 4 cách chọn

=> có 4 số

Nên ta có 24+16+4=44( số)

Vậy có tất cả 44 số có 3 chữ số khác nhau lớn hơn 300

 

28 tháng 9 2021

b, Số có 4 chữ số có dạng \(\overline{abcd}\).

a có 7 cách chọn.

b có 7 cách chọn.

c có 6 cách chọn.

d có 5 cách chọn.

\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.

28 tháng 9 2021

a, Có thể lập được \(\dfrac{7777-1000}{1}+1=6778\) số thỏa mãn.

NV
24 tháng 7 2021

a. Gọi số đó là \(\overline{ab}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)

Theo quy tắc nhân ta có: \(5.5=25\) số

b. Gọi số đó là \(\overline{abc}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)

Có: \(5.5.4=100\) số

c. Gọi số đó là \(\overline{abcd}\)

Do số chẵn nên d chẵn

- TH1: \(d=0\) (1 cách chọn d)

a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn 

\(\Rightarrow1.5.4.3=60\) số

- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn

d.

Gọi số đó là \(\overline{abcde}\)

Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)

a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách

\(\Rightarrow3.4.4.3.2=288\) số

24 tháng 7 2021

Thanks ạ