K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

TH1: Hàng đơn vị là 0

=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 8 x 7 x 6 x 5 = 1680 (cách)

TH2: Hàng đơn vị là 5

=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 7 x 7 x 6 x 5 = 1470 (cách)

Số lượng số tự nhiên có 5 chữ số được lập bởi các số 0,1,2,3,4,5,6,7,8 và chia hết cho 5 là: 1680 + 1470 = 3150 (số)

Đáp số: 3150 số thoả mãn

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Các số tự nhiên nhỏ hơn 1000 gồm các số có 1 chữ số, có 2 chữ số hoặc 3 chữ số.

+ Số có 1 chữ số chia hết cho 5 là: 0 và 5 => có 2 số.

+ Số có 2 chữ số chia hết cho 5:

Hàng đơn vị là 0: chữ số hàng chục có 9 cách chọn.

Hàng đơn vị là 5: chữ số hàng chục có 8 cách chọn (khác 0).

=> Có \(9 + 8 = 17\) (số)

+ Số có 3 chữ số chia hết cho 5:

Hàng đơn vị là 0: chữ số hàng trăm có 9 cách chọn, hàng chục có 8 cách chọn.

Hàng đơn vị là 5: chữ số hàng trăm có 8 cách chọn, hàng chục có 8 cách chọn.

=> Có 9.8+8.8 = 136 (số)

Vậy có tất cả \(2 + 17 + 136 = 155\) số thỏa mãn ycbt.

Chia A thành 3 tập hợp:

B={1;4;7}; C={2;5;8}; D={0;3;6}

TH1: 2 số trong B, 2 số trong C

=>Có \(C^2_3\cdot C^2_3\cdot4!=216\left(cách\right)\)

TH2: 1 số trong B, 1 số trong C, số 0 và 1 số trong D

=>Có 3*3*1*2*3*3*2*1=324 cách

TH3: 1 số trong B, 1 số trong C, 2 số khác 0 trong D

=>Có 3*3*1*4!=216 cách

TH4: 3 số trong B, số 0

=>Có 3*3*2*1=18 cách

TH5: 3 số trong B, 1 số khác 0 trong D

=>Có 2*4!=24*2=48 cách

TH6: 3 số trong C, số 0

=>Có 3*3*2*1=18 cách

TH7: 3 số trong C, 1 số khác 0 trong D

=>Có 2*4!=48 cách

=>Có 216+324+216+18+48+18+48=888 cách

\(\overline{abcde}\)

TH1: e=0

e có 1 cách chọn

Chữ số 2 có 4 cách chọn

ba chỗ còn lại có 4*3*2=24 cách

=>Có 4*24=96 cách

TH2: e=5; a=2

a,e có 1 cach

b có 4 cách

c có 3 cách

dcó 2 cách

=>Có 4*3*2=24 cách

TH3: e=5; a<>2

e có 1 cách chọn

a có 3 cách chon

số 2 có 3 cách

hai số còn lại có 3*2=6 cách

=>Có 3*3*6=54 cách

=>CÓ 96+24+54=174 số

NV
20 tháng 3 2023

Số chia hết cho 4 khi 2 chữ số tận cùng của nó chia hết cho 4, nên ý tưởng ở đây là chọn 2 số tận cùng trước.

Có \(\dfrac{96-04}{4}+1=24\) số có 2 chữ số chia hết cho 4 (tính cả những số bắt đầu bằng 0 như 04, 08...)

Loại ra 2 trường hợp 2 chữ số trùng nhau là \(44\) và \(88\), ta còn 22 chữ số.

Chia 22 chữ số này làm 2 loại: có chứa chữ số 0 bao gồm 6 số là 04, 08, 20, 40, 60, 80 và 16 số không chứa chữ số 0

- TH1: 2 chữ số cuối có chứa 0, chọn 3 chữ số còn lại từ 8 chữ số còn lại và hoán vị chúng có \(A_8^3\) cách \(\Rightarrow6.A_8^3\) số

- TH2: 2 chữ số cuối không chứa chữ số 0:

+ Chọn 3 chữ số còn lại 1 cách bất kì và hoán vị: \(A_8^3\) cách

+ Chọn 3 chữ số còn lại có mặt chữ số 0 và hoán vị sao cho số 0 đứng đầu: \(A_7^2\) cách

\(\Rightarrow16.\left(A_8^3-A_7^2\right)\) số

Cộng 2 trường hợp lại

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Gọi số tự nhiên cần tìm là \(\overline {abcd} \).

-  Trường hợp 1:  \(d = 0\)

Mỗi cách chọn 3 số còn lại (a, b, c) (có xếp thứ tự ) trong 9 số còn lại (1, 2,...,9) là một chỉnh hợp chập 3 của 9.

Số cách chọn 3 chữ số còn lại là  \(A_9^3=504\)

-  Trường hợp 2: \(d = 5\) .

+ \(a \ne 0,d\) nên a có 8 cách chọn.

+ \(b \ne a,d\) nên b có 8 cách chọn.

+ \(c \ne a,b,d\) nên c có 7 cách chọn.

Vậy có: 504+ 8.8.7= 952 số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)

b)    Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).

Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:

       8. 3! = 48 (số)

Từ các chữ số thuộc tập hợp \(A=\left\{0;1;2;3;...;9\right\}\), lập được bao nhiêu số tự nhiên:a) có bốn chữ số khác nhau sao cho các chữ số được sắp xếp theo thứ tự tăng dần từ trái qua phải?b) có sáu chữ số khác nhau sao cho có mặt chữ số 1 và chữ số 2?c) có sáu chữ số khác nhau sao cho có ba chữ số chẵn và ba chữ số lẻ?d) có sáu chữ số khác nhau sao cho là số lẻ và chữ số đứng ở hàng nghìn luôn chia...
Đọc tiếp

Từ các chữ số thuộc tập hợp \(A=\left\{0;1;2;3;...;9\right\}\), lập được bao nhiêu số tự nhiên:

a) có bốn chữ số khác nhau sao cho các chữ số được sắp xếp theo thứ tự tăng dần từ trái qua phải?

b) có sáu chữ số khác nhau sao cho có mặt chữ số 1 và chữ số 2?

c) có sáu chữ số khác nhau sao cho có ba chữ số chẵn và ba chữ số lẻ?

d) sáu chữ số khác nhau sao cho là số lẻ và chữ số đứng ở hàng nghìn luôn chia hết cho .

e) chín chữ số khác nhau trong đó mặt các chữ số 0, 1, 2, 3, 4 và các chữ số 1, 2, 3, 4 sắp xếp theo thứ tự tăng dần từ trái qua phải?

g) sáu chữ số khác nhau và là số chẵn lớn hơn 40000?

h) có mười chữ số đôi một khác nhau, trong đó các chữ số 1, 2, 3, 4, 5 được sắp xếp theo thứ tự tăng dần từ trái qua phải và chữ số 6 luôn đứng trước chữ số 5?

k) có ba chữ số khác nhau và chia hết cho 3?

i) có tám chữ số trong đó có 2 chữ số lẻ khác nhau và 3 chữ số chẵn khác nhau mà mỗi chữ số chẵn có mặt đúng hai lần.

1

a:

TH1: Trong 4 số có số 0

=>Số cách là: \(C^3_9\cdot3\cdot3\cdot2\cdot1=1512\left(cách\right)\)

TH2: ko có số 0

=>Số cách là: \(A^4_9=3024\left(cách\right)\)

=>Có 1512+3024=4536 cách

b: TH1: Có số 0

=>Có \(C^3_7\cdot5\cdot5\cdot4\cdot3\cdot2\cdot1=21000\left(cách\right)\)

TH2: ko có số 0

=>Có \(C^4_7\cdot6!=25200\left(cách\right)\)

=>Có 46200 cách