K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:

* BA = BC (gt)

Suy ra B thuộc đường trung trực của AC

* DC = DA (gt)

Suy ra D thuộc đường trung trực của AC

Mà B ≠ D nên BD là đường trung trực của AC

Do đó A đối xứng với C qua trục BD.

3 tháng 10 2016

các bạn giải hộ mik với mik đang cần gấp

22 tháng 9 2017

Có hình vẽ :

A B C D

 Lấy trung điểm M của BC . Kẻ MM,MM, vuông góc B'C' => MM' = 1212(BB'+CC')(1)

△GMM′∼△GAA′(g.g)=>MM′AA′=GMAG=12△GMM′∼△GAA′(g.g)=>MM′AA′=GMAG=12(2)

Từ (1);(2) => AA'=BB'+CC'

1b Lấy trung điểm M của BC . Kẻ MM' vuông góc với B'C' . Lấy E là trung điểm AG => AE=EG=GM

=>EE′=12(AA′+GG′);GG′=12(MM′+EE′)=>MM′+AA′+GG′2=2GG′=>2MM′+AA′=3GG′=>AA′+BB′+CC′=3GG′

P/s: Tham khảo nha

22 tháng 9 2017

k hỉu cho lm

21 tháng 10 2021

a, Xét tg AHD và tg CIB có \(AD=BC;\widehat{AHD}=\widehat{CIB}=90^0;\widehat{ADH}=\widehat{CBI}\left(so.le.trong\right)\) nên \(\Delta AHD=\Delta CIB\left(ch-gn\right)\)

Do đó \(AH=CI\)

Mà AH//CI (⊥BD) nên AHCI là hbh

b, Vì AHCI là hbh mà M là trung điểm HI nên cũng là trung điểm AC

Do đó A đối xứng C qua M

1, Cho tứ giác ABCD, các đường chéo AC và BD cắt nhau tại O. Các cạnh AD, BC kéo dài cắt nhau tại E. Biết AC vuông góc AD và BD vuông góc BC. Chứng minh rằng đường thẳng d đi qua các trung điểm OE và CD là trục đối xứng của cạnh AB2, Cho 2 điểm A, B nằm trên nửa mặt bờ là đường thẳng d. Gọi AH, BK là các đường vuông góc kẻ từ A, B đến d. Gọi C là điểm nằm bất kì giữa H và K, A' đối...
Đọc tiếp

1, Cho tứ giác ABCD, các đường chéo AC và BD cắt nhau tại O. Các cạnh AD, BC kéo dài cắt nhau tại E. Biết AC vuông góc AD và BD vuông góc BC. Chứng minh rằng đường thẳng d đi qua các trung điểm OE và CD là trục đối xứng của cạnh AB

2, Cho 2 điểm A, B nằm trên nửa mặt bờ là đường thẳng d. Gọi AH, BK là các đường vuông góc kẻ từ A, B đến d. Gọi C là điểm nằm bất kì giữa H và K, A' đối xứng với A qua d, Giả sử góc ACH = góc BCK

  a, Chứng minh rằng kí đó A' , C , B thẳng hàng

  b, Nêu cách dựng điểm C sao cho AC + BC bé nhất

3, Cho tam giác ABC. Dựng hình đối xứng với tam giác đã cho qua trung điểm D của cạnh BC

  a, Tứ giác tạo thành là hình gì

  b, Tính chu vi tứ giác đó biết AB = 10cm, AC = 7cm

4, Cho hình bình hành với E, F lần lượt là trung điểm của AD, BC; G thuộc đoạn AB. Gọi H và I lần lượt là điểm đối xứng của G qua E và F

  a, Chứng minh H, D, C, I thẳng hàng

  b, Chưng minh HI = 2CD

0

a: Ta có: D đối xứng với A qua BC

nên BC là đường trung trực của AD

=>BC vuông góc với AD tại trung điểm của AD

=>F là trung điểm của AD

Ta có: ΔABC cân tại A

mà AF là đường cao

nên F là trung điểm của BC

Xét tứ giác ABDC có

F là trung điểm của AD

F là trung điểm của BC

Do đó:ABDC là hình bình hành

mà AB=AC
nên ABDC là hình thoi

b: Xét ΔEBC có 

BA là đường trung tuyến

BA=EC/2

Do đó:ΔEBC vuông tại B

=>EB\(\perp\)BC

c: Xét tứ giác ADBE có 

AD//BE

AD=BE

Do đó; ADBE là hình bình hành