K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

t cung chưa làm đc đm

25 tháng 8 2015

EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành. 
=> MP và EF cắt nhau tại trung điểm I. 
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I 
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành 

tích mình với

ai tích mình

mình tích lại

thanks

18 tháng 10 2019

a) Xét tam giác ABF có:

E là trung điểm của AB

P là trung điểm của BF

⇒ EP là đường trung bình của ΔABF

⇒ EP // AF và EP = AF/2

M là trung điểm AF (gt)

⇒ MF = AF/2

Do đó EP // MF và EP = MF. Vậy EPFM là hình bình hành

I là giao điểm của hai đường chéo MP và EF nên I là trung điểm của MP.

b) Do tứ giác EPFM là hình bình hành nên I là trung điểm của EF.

Chứng minh tương tự ta có ENFQ là hình bình hành mà I là trung điểm của EF ⇒ I là trung điểm của NQ (2)

Từ (1) và (2) ⇒ MNPQ là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).

30 tháng 7 2017

Bài 1. 
EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành. 
=> MP và EF cắt nhau tại trung điểm I. 
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I 
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành 

30 tháng 7 2017

Thanks bn 

9 tháng 8 2018

A B C D M I P N Q

a) Xét \(\Delta ABF\) có:

E là trung điểm của AB

P là trung điểm của BF

\(\Rightarrow EP\) là trug điểm của \(\Delta ABF\)

=> EP//AF và \(EP=\frac{AF}{2}\)

M là trung điểm AF (gt)

\(\Rightarrow MF=\frac{AF}{2}\)

=> I là giao điểm của hai đường chéo MP và EF nên I là trung điểm của MP.

b) Do tứ giác EPFM là hình bình hành nên I là trung điểm của EF.

Chứng minh tương tự ta có ENFQ là hình bình hành mà I là trung điểm của EF

=> I là trung điểm của NQ (1) 

=> MNPQ là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).