K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

Tổng các hệ số của đa thức f(x) = (3x – 4)17 bằng:

f(1) = (3 – 4)17= (– 1)17 = -1

24 tháng 8 2017

Tại sao bài khai triển đa thức nào mình cũng nhân 1 vậy?

 

27 tháng 11 2019

Giải bài 5 trang 58 sgk Đại số 11 | Để học tốt Toán 11

Đặt S là tổng các hệ số của đa thức khai triển.

Ta có:

Giải bài 5 trang 58 sgk Đại số 11 | Để học tốt Toán 11

Vậy tổng các hệ số của đa thức khai triển bằng -1.

NV
13 tháng 11 2021

Tổng hệ số trong khai triển \(P\left(x\right)\) luôn luôn bằng \(P\left(1\right)\)

Do đó tổng hệ số là: \(\left(3-2.1\right)^9=1\)

NV
11 tháng 4 2021

\(C_2^2+C_3^2+...+C_n^2=C_3^3+C_3^2+C_4^2+...+C_n^2\) (do \(C_2^2=C_3^3=1\))

\(=C_4^3+C_4^2+C_5^2+...+C_n^2=C_5^3+C_5^2+...+C_n^2\)

\(=...=C_n^3+C_n^2=C_{n+1}^3\)

Do đó:

\(2C_{n+1}^3=3A_{n+1}^2\Leftrightarrow\dfrac{2.\left(n+1\right)!}{3!.\left(n-2\right)!}=\dfrac{3.\left(n+1\right)!}{\left(n-1\right)!}\)

\(\Leftrightarrow n-1=9\Rightarrow n=10\)

\(\Rightarrow P=\left(1-x-3x^3\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(-x-3x^3\right)^k\)

\(=\sum\limits^{10}_{k=0}C_{10}^k\left(-1\right)^k\left(x+3x^3\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^kx^i.3^{k-i}.x^{3\left(k-i\right)}\)

\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^k.3^{k-i}.x^{3k-2i}\)

Ta có: \(\left\{{}\begin{matrix}0\le i\le k\le10\\i;k\in N\\3k-2i=4\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;2\right);\left(4;4\right)\)

Hệ số: \(C_{10}^2C_2^1\left(-1\right)^2.3^1+C_{10}^4C_4^4.\left(-1\right)^4.3^0=...\)

11 tháng 4 2021

undefined

\(\Rightarrow he-so:\left[{}\begin{matrix}C^9_{10}C^1_9\left(-3\right)^{10-9}\left(-1\right)=270\\C^{10}_{10}C^4_{10}\left(-3\right)^{10-10}.\left(-1\right)^4=210\end{matrix}\right.\)

NV
5 tháng 3 2022

\(f\left(x\right)=\sum\limits^3_{i=0}C_3^i\left(x+x^2\right)^i.\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k\left(2x\right)^k\)

\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}C_3^i.C_i^jx^j.\left(x^2\right)^{i-j}\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k.2^k.x^k\)

\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}\sum\limits^{15}_{k=0}C_3^iC_i^jC_{15}^k\left(\dfrac{1}{4}\right)^{3-i}.2^k.x^{2i+k-j}\)

Số hạng chứa \(x^{13}\) thỏa mãn:

\(\left\{{}\begin{matrix}0\le i\le3\\0\le j\le i\\0\le k\le15\\2i+k-j=13\end{matrix}\right.\) 

\(\Rightarrow\left(i;j;k\right)=\left(0;0;13\right);\left(1;0;12\right);\left(1;1;11\right);\left(2;0;11\right);\left(2;1;10\right);\left(2;2;9\right);\left(3;0;10\right);\left(3;1;9\right)\)

\(\left(3;2;8\right);\left(3;3;7\right)\) (quá nhiều)

Hệ số....

11 tháng 4 2016

Theo công thức nhị thức Niu-tơn, ta có :

\(P=C_6^0\left(x-1\right)^6+C_6^1\left(x-1\right)^5+....+C_6^kx^{2k}\left(x-1\right)^{6-k}+....+C_6^5x^{10}\left(x-1\right)+C_6^6x^{12}\)

Suy ra, khi khai triển P thành đa thức, \(x^2\) chỉ xuất hiện khi khai triển \(C_6^0\left(x-1\right)^6\) và \(C_6^1\left(x-1\right)^5\)

Hệ số của  \(x^2\) trong khai triển  \(C_6^0\left(x-1\right)^6\)  là : \(C_6^0.C_6^2\)

Hệ số của  \(x^2\) trong khai triển  \(C_6^1\left(x-1\right)^5\)  là : \(-C_6^1.C_5^0\)

Vì vậy hệ số của  \(x^2\) trong khai triển P thành đa thức là : \(C_6^0.C_6^2-C_6^1.C_5^0=9\)

   

 

11 tháng 6 2019

3 tháng 8 2019

1 tháng 5 2019

NV
25 tháng 12 2022

Số hạng tổng quát của khai triển: \(C_7^k.x^k.2^{7-k}\)

Số hạng chứa \(x^5\Leftrightarrow k=5\)

Hệ số của số hạng đó là: \(C_7^5.2^2=...\)