Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\widehat{BTA}=\widehat{TCB}\)( góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung \(\widebat{TB}\))
\(\Delta ABT\infty\Delta ATC\)(g.g) => \(\frac{AT}{AC}=\frac{AB}{AT}\)=> \(AT^2=AB.AC\)(đpcm)
Còn câu b và c có ai giúp mình giải kg
b) Do AT là tiếp tuyến của (O) nên AT vuông góc với OT => ^OAT=90
xét tam giác OAT vuông có OH là đường cao nên ta có AT^2=AO.AH (2)
từ câu a) ta có AT^2=AB.AC (1)
Từ (1) và (2) suy ra "ĐPCM"
c) từ kết quả của câu b)=> AB/AO = AH/AC
Xét 2 tam giác ABO và AHC có ^OAC chung ; AB/AO = AH/AC
suy ra tam giác ABO đồng dạng tam giác AHC => ^AOB = ^ACH hay ^HOB = ^BCH => OHBC nội tiếp đường tròn
a. AB là tiếp tuyến của đt (O) tại B (gt) => \(\widehat{OBA}=90^o\)
AC là tiếp tuyến của đt (O) tại C (gt) => \(\widehat{OCA}=90^o\)
Xét tứ giác ABOC có: \(\widehat{OBA}+\widehat{OCA}=90^o+90^o=180^o\)=> Tứ giác ABOC nội tiếp đường tròn (Dhnb) => Đpcm
b.
Xét đt (O) có: \(\widehat{ABD}=\frac{1}{2}sđ\widebat{BD}\)(T/c góc tạo bởi tiếp tuyến và dây cung)
\(\widehat{BED}=\widehat{BEA}=\frac{1}{2}sđ\widebat{BD}\)(T/c góc nội tiếp của đt) (Do A,D,E (gt) => \(\widehat{BED}=\widehat{BEA}\))
=> \(\widehat{ABD}=\widehat{BEA}\)
Xét \(\Delta ABD\)và \(\Delta AEB\)có:
* \(\widehat{A}chung\)
* \(\widehat{ABD}=\widehat{BEA}\left(cmt\right)\)
=> \(\Delta ABD~\Delta AEB\left(g.g\right)\)=> \(\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AB^2=AD.AE\RightarrowĐpcm\)
c. Vì F là điểm đối xứng của D qua OA => OA là đường trung trực của DF (Đ/n đối xứng trục) => OD = OF = R (T/c điểm thuộc đường trung trực) => F \(\in\left(O\right)\)và \(\Delta ODF\)cân tại O (Đ/n) => OA vừa là đường trung trực của đoạn thẳng DF đồng thời là đường phân giác của \(\widehat{DOF}\)(T/c của \(\Delta\)cân)=> \(\widehat{DOA}=\widehat{FOA}=\frac{1}{2}\widehat{DOF}=\frac{1}{2}sđ\widebat{DF}\)
Xét đt (O) có: \(\widehat{DEF}=\frac{1}{2}sđ\widebat{DF}\)(T/c góc nội tiếp) => \(\widehat{DOA}=\widehat{DEF}\)(1)
Ta có: AB,AC lần lượt là 2 tiếp tuyến của đt (O) (B,C là 2 tiếp điểm) (gt) => OA là tia phân giác của \(\widehat{BOC}\)(Định lý về 2 tiếp tuyến cắt nhau)
Lại có: OB = OC = R => \(\Delta OBC\)cân tại O (Đ/n) => OA vừa là phân giác đồng thời là đường cao của \(\Delta OBC\)(T/c của \(\Delta\)cân)=> \(OA\perp BC\)tại H (H là giao điểm của OA và BC)
Áp dụng hệ thức lượng trong \(\Delta\)vuông ABO (vuông tại B) với đường cao BH ta được: \(AB^2=AH.AO\)
Mà \(AB^2=AD.AE\left(cmt\right)\)=> \(AD.AE=AH.AO\Leftrightarrow\frac{AD}{AO}=\frac{AH}{AE}\)
Xét \(\Delta AHD\)và \(\Delta AEO\)có:
* \(\widehat{A}\)chung
* \(\frac{AD}{AO}=\frac{AH}{AE}\left(cmt\right)\)
=> \(\Delta AHD~\Delta AEO\left(c.g.c\right)\)=> \(\widehat{AHD}=\widehat{AEO}=\widehat{DEO}\left(Do\overline{A,D,E}\Rightarrow\widehat{AEO}=\widehat{DEO}\right)\)=> Tứ giác DEOH là tứ giác nội tiếp (Dhnb) => \(\widehat{DEH}=\widehat{DOH}=\widehat{DOA}\)(2 góc nội tiếp cùng chắn \(\widebat{DH}\)) (Do A,H,O => \(\widehat{DOH}=\widehat{DOA}\)) (2)
Từ (1) và (2) => \(\widehat{DEF}=\widehat{DEH}\)=> 3 điểm E,F,H thẳng hàng ( 2 góc cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau) => Đpcm.