Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi số cần tìm có dạng
TH1: 2 số lẻ liên tiếp ở vị trí ab
a có 3 cách chọn
b có 2 cách chọn
c có 4 cách chọn
d có 3 cách chọn
e có 2 cách chọn
TH2:2 số lẻ liên tiếp ở vị trí bc
a có 3 cách chọn
b có 3 cách chọn
c có 2 cách chọn
d có 3 cách chọn
e có 2 cách chọn
TH3: 2 số lẻ liên tiếp ở vị trí cd (tượng tự TH2)
Vậy số cách chọn thỏa mãn yêu cầu đề bài là:
3.2.4.3.2+2.(3.3.2.3.2)=360
Gọi abcde là số có 5 chữ số khác nhau.
a#0=>a có 6 cách chọn
=>b,c,d,e có 6A4 cách chọn
Theo quy tắc nhân có: 6.6A4=2160(số)
Số có 5 chữ số có dạng: \(\overline{abcde}\)
TH1: \(e=0\)
Số cách chọn \(\overline{abcd}\) là: \(C_4^6\)
TH2: \(e=5\)
\(a\) có 5 cách chọn
Số cách chọn \(\overline{bcd}\) là: \(C_3^5\)
Vậy lập được \(C_4^6+5.C_3^5=65\) số có 5 chữ số chia hết cho 5
Lời giải:
Gọi số cần tìm là $\overline{a_1a_2a_3a_4a_5}$
TH1: $a_5=5$
$a_1$ có 5 cách chọn
$a_2$ có 5 cách chọn
$a_3$ có 4 cách chọn
$a_4$ có 3 cách chọn
$\Rightarrow$ lập được $5.5.4.3=300$ số
TH2: $a_5=0$
$a_1$ có 6 cách chọn
$a_2$ có 5 cách chọn
$a_3$ có 4 cách chọn
$a_4$ có 3 cách chọn
$\Rightarrow$ lập được $6.5.4.3=360$ số
Tổng các số lập được: $300+360=660$ số
Có 5 cách chọn chữ số hàng trục nghìn
Có 5 cách chọn chữ số hàng nghìn
Có 5 cách chọn chữ số hàng trăm
Có 5 cách chọn chữ số hàng trục
Có 5 cách chọn chữ số hàng đơn vị
=> Có thể lập được bao nhiêu số tự nhiên có 5 chữ số từ các số đã cho là:
5.5.5.5.5 = 3125 ( số )
TH1: f=0
=>Có 8*7*6*5*4=6720 cách
TH2: f=5
=>Có 7*7*6*5*4=5880 cách
=>Có 6720+5880=12600 cách
Gọi chữ số hàng đơn vị là a
TH1: \(a=0\Rightarrow\) 3 chữ số còn lại có \(A_6^3\) cách chọn và hoán vị
TH2: \(a=5\)
\(\Rightarrow\) Chữ số hàng nghìn có 5 cách chọn (khác 5 và 0), 2 chữ số còn lại có \(A_5^2\) cách
\(\Rightarrow A_6^3+5.A_5^2\) số
\(\overline{abcd}\)
TH1: d=0
=>CÓ 6*5*4=120 cách
TH2: d=5
=>Có 5*5*4=100 cách
=>Có 120+100=220 cách
Gọi số cần lập có dạng \(\overline{abcde}\)
e có 4 cách chọn (từ 1;3;5;7)
a có 6 cách chọn (khác 0 và e)
b có 6 cách chọn (khác a và e)
c có 5 cách chọn (khác a,b,e)
d có 4 cách chọn (khác a,b,c,e)
Theo quy tắc nhân, có: \(4.6.6.5.4=...\) số
Vì có 3 số lẻ là 1,3,5, nên ta tạo được 6 cặp số kép: 13;31;15;51;35;53
Gọi A là tập các số gồm 4 chữ số được lập từ X={0;13;2;4;6}.
Gọi A1,A2,A3 tương ứng là số các số tự nhiên lẻ gồm 4 chữ số khác nhau được lập từ các chữ số của tập X và 13 đứng ở vị trí thứ nhất, thứ hai và thứ ba.
Ta có:
Nên
Vậy số các số cần lập là: 6.60=360 số.
Chọn A.