Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\)
=>\(\frac{5a-3b}{5c-3d}=\frac{a}{c}=\frac{3a+2b}{3c+3d}\)
=>\(\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+3d}\)
=>\(\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+3d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\)
=> \(\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\) ( Vì cùng bằng \(\frac{a}{c}\))
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}\)
= \(\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)=> \(\frac{3a-2b}{3a+2b}=\frac{3c-2d}{3c+2d}\)
tíc mình nhé! Thanks
Đặt a/b=c/d=k=>a=kb;c=kd
Khi đó ta có:3a-2b/3a+2b=3kb-2b/3kb+2b=b(3k-2)/b(3k+2)=3k-2/3k+2 (1)
3c-2d/3c+2d=3kd-2d/3kd+2d=d(3k-2)/d(3k+2)=3k-2/3k+2 (2)
Từ (1) và (2) =>....
a) Ta có : \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}=\frac{3a}{3c}=\frac{2b}{2d}\)
\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)
\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\left(đpcm\right)\)
a/ do \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)(điều phải suy ra)
bạn viết sai đề bài b nhé phân số đầu là \(\frac{2a+3c}{2b+3d}\)
b/ đặt \(\frac{a}{b}\)= \(\frac{c}{d}\) là K
a=Kb;c=Kd
ta có:\(\frac{2a+3c}{2b+3d}\)= \(\frac{2Kb+3Kd}{2b+3d}\) = \(\frac{k\left(2b+3d\right)}{2b+3d}\) = K (1)
\(\frac{2a-3c}{2b-3d}\) = \(\frac{2Kb-3Kd}{2b-3d}\) = \(\frac{k\left(2b-3d\right)}{2b-3d}\) =K (2)
từ (!) và (2) suy ra \(\frac{2a+3c}{2b+3d}\) = \(\frac{2a-3c}{2b-3d}\)
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)
=> \(\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)
=> \(\frac{3a-2b}{3a+2b}=\frac{3c-2d}{3c+2d}\) (Đpcm)
b)\(\frac{ac}{bd}=\frac{bkdk}{bd}=k.k=k^2\)
\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{\left[k\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)
=> \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Đặt k ( với k khác 0 , thuộc Z ) sao cho \(\frac{a}{b}=\frac{c}{d}=k\) => \(a=kb\) / \(c=dk\) .
a) Thế vào \(\frac{5a-b}{3a+2b}\) , ta có \(\frac{5kb-3b}{3kb+2b}\)\(=\frac{b\left(5k-3\right)}{b\left(3k+2\right)}\)\(=\frac{5k-3}{3k+2}\) / \(\frac{5c-3d}{3c+2d}=\frac{5dk-3d}{3dk-2d}=\frac{d\left(5k-3\right)}{d\left(3k+2\right)}=\frac{\left(5k+3\right)}{\left(3k+2\right)}\)
=> VT = VP
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5a}{5c}=\frac{2b}{2d}=\frac{3a-2b}{3c-2d}=\frac{5a+2b}{5c+2d}\)
\(\Rightarrow\frac{3a-2b}{5a+2b}=\frac{3c-2d}{2c+2d}\) ( đpcm )