Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bạn tự vẽ
b) Để 2 đồ thị hàm số cắt nhau tại 1 điểm trên trục tung
\(\Leftrightarrow\left\{{}\begin{matrix}3\ne1\\2-m=2m-1\end{matrix}\right.\) \(\Leftrightarrow m=1\)
Vậy \(m=1\)
Lời giải:
1. Khi $m=-2$ thì ta có 2 đths:
$y=2x-2$ (đồ thị xanh lá) và $y=-x-2$ (đồ thị xanh biển)
2.
Để 2 đths trên song song thì:
\(\left\{\begin{matrix}
2=m+1\\
2\neq m^2+m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
m=1\\
(m-1)(m+2)\neq 0\end{matrix}\right.\) (vô lý)
Vậy không tồn tại $m$ để 2 đt trên là 2 đt song song
b: Để hai đường cắt nhau thì 2k+2<>1-3k
=>5k<>-1
=>k<>-1/5
2) Để (d)//(1) thì \(\left\{{}\begin{matrix}2m-1=2\\-5m\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=3\\m\ne\dfrac{-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{2}\)
Vậy: Khi \(m=\dfrac{3}{2}\) thì (d)//(1)