Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Có ^cAe + ^cAd = 180o (kề bù) => ^cAe = 120o
b,Vì Ad là p/g ^cAe => ^A1 = ^A2 = \(\frac{\widehat{cAe}}{2}=\frac{120^o}{2}=60^o\)
Ta có : \(\widehat{A_1}+\widehat{bAd}=180^o\)(Kề bù)
\(\Rightarrow\widehat{bAd}=120^o\)
\(\Rightarrow\widehat{bAd}>\widehat{bAc}\left(120^o>60^o\right)\)
Mà ^bAd = 2.^bAc
=> Ac là p/g ^bAd
c,Có ^cAe + ^A4 = 180o (kề bù)
=> ^A4 = 60o
Có ^bAg + ^A4 = 180 (kề bù)
=>^bAg = 120o
Vì AH là p/g ^bAg => ^A5 = ^bAg : 2 = 60o
Ta có \(\widehat{A_1}+\widehat{A_4}+\widehat{A_5}=60^o+60^o+60^o=180^o\)
=> ^dAh = 180o
=> 2 tia Ad và Ah đối nhau
a) Ta có: góc BAC + góc EAC =180\(^0\)(kề bù)
suy ra góc EAC= 120\(^0\)
Vì Ad là tia phân giác của \(\widehat{CAe}\) nên \(\widehat{CAE}\)= \(\widehat{DAE}\)
mà \(\widehat{CAD}\)+\(\widehat{DAE}\)=\(\widehat{EAC}\)
⇒\(\widehat{CAD}\) = \(\widehat{DAE}\)= \(\widehat{\frac{EAC}{2}}\)=\(\frac{120^0}{2}\)=60\(^0\)
mà \(\widehat{BAC}\)= 60 \(^0\) ⇒\(\widehat{BAC}\)=\(\widehat{CAD}\) =60\(^0\)⇒AC là tia phân giác của \(\widehat{bAd}\)(ĐPCM)
b) Ta có : \(\widehat{CAE}\)+\(\widehat{EAG}\)=180 \(^0\) (kề bù )
suy ra\(\widehat{EAG}\)=60 \(^0\)
Có \(\widehat{BAG}\)+ \(\widehat{EAG}\)=180 \(^0\)( KB)
suy ra \(\widehat{BAG}\) =120 \(^0\)
Vì AB là tia phân giác của \(\widehat{BAG}\) suy ra \(\widehat{GAb}\) = \(\frac{\widehat{BAG}}{2}\) =60\(^0\)
Ta có \(\widehat{EAD}\)+\(\widehat{BAd}\)+\(\widehat{EAG}\)=180\(^0\)
suy ra \(\widehat{BAd}\)=180\(^0\)
Tia Ad,Ab là 2 tia đối nhau (ĐPCM)
(Bài toán vẫn có 1 số lỗi nhỏ, hình cậu tự vẽ nha, vẽ trên đây không đúng 100%) Học tốt!
a) Ta có : \(\widehat{BAC}\)+ \(\widehat{EAC}\)\(=180^0\)(Kề bù)
Suy ra: \(\widehat{EAC}\)\(=120^0\)
Vì Ad là tia phân giác của \(\widehat{CAe}\)nên \(\widehat{CAD}\)\(=\widehat{DAE}\)
Mà \(\widehat{CAD}\)\(+\widehat{DAE}\)\(=\widehat{EAC}\)
\(\Rightarrow\widehat{CAD}+\widehat{DAE}=\)\(\widehat{\frac{EAC}{2}}\)\(=\frac{120^0}{2}=60^0\)
Mà \(\widehat{BAC}=60^0\Rightarrow\widehat{BAC}=\widehat{CAD}\Rightarrow AC\)là tia phân giác của \(\widehat{bAd}\)(ĐPCM)
B) Ta có: \(\widehat{CAE}+\widehat{EAG}=180^0\)(Kề bù)
\(\Rightarrow\widehat{EAG}=60^0\)
Ta có \(\widehat{BAG}+\widehat{EAG}=180^0\)
\(\widehat{BAG}+60^0=180^0\)
\(\widehat{BAG}=180^0-60^0\)
\(\widehat{BAG}=120^0\)
Vậy \(\widehat{BAG}=120^0\)
Vì AB là tia phân giác của \(\widehat{BAG}\)
Nên: \(\widehat{GAb}=\frac{\widehat{BAG}}{2}=\frac{120^0}{2}=60^0\)
Ta có: \(\widehat{EAD}+\widehat{BAb}+\widehat{EAG}=180^0\)
\(\Rightarrow\widehat{bAd}=180^0\)
Suy ra: Tia Ad và Ab là 2 tia đối nhau (ĐPCM)
[Bạn tự vẽ hình nha ( trong bài vẫn còn vài lỗi, xem kĩ nha)]
Tự vẽ hình
a,Có \(\widehat{cAe}+\widehat{cAd}=180^{o^{ }}\)(Vì kề bù)
Vì Ad là p/g \(\widehat{cAe}\Rightarrow A_1=A_2=\frac{\widehat{cAe}}{2}=\frac{120^o}{2}=60^o\)
b,Ta có:\(A_1+bAd=180^o\)(vì kề bù)
\(\Rightarrow\widehat{bAd}=120^o\)
\(\Rightarrow bAd>bAc\left(120^o>60^o\right)\)
Mà \(\widehat{bAd}=2.\widehat{bAc}\)
=>Ac là p/g \(\widehat{bAd}\)
c, có \(\widehat{cAe}+A_4=180^o\)(vì kề bù)
\(\Rightarrow A_4=60^o\)
Có:\(\widehat{bAg}+A_4=180^o\)
\(\Rightarrow\widehat{bAg}=120^o\)
Vì Ah là p/g\(\widehat{bAg}\Rightarrow A_5=\widehat{bAg}\div2=60^o\)
TA có:\(\widehat{A_1}+A_4+A_5=60^o+60^o+60^o=180^o\)
\(\Rightarrow\widehat{dAh}=180^o\)
=>2 tia Ad và Ah đối nhau
Câu 2: Giải
Đặt \(d=\left(2n+2,6n+5\right)\)
\(\Leftrightarrow\hept{\begin{cases}\left(2n+2\right)⋮d\\\left(6n+5\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[3\left(2n+2\right)\right]⋮d\\\left(6n+5\right)⋮d\end{cases}}\)
\(\Leftrightarrow\left[3\left(2n+2\right)-\left(6n+5\right)\right]⋮d\)
\(\Leftrightarrow\left[6n+6-6n-5\right]⋮d\)
\(\Leftrightarrow\left[\left(6n-6n\right)+\left(6-5\right)\right]⋮d\)
\(\Leftrightarrow\left[0+1\right]⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy phân số \(\frac{2n+2}{6n+5}\) tối giản với mọi n \(\inℕ\)
a) Ta có: \(\widehat{BAC}+\widehat{EAC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{EAC}+60^0=180^0\)
hay \(\widehat{EAC}=120^0\)
Vậy: \(\widehat{EAC}=120^0\)
b)
Ta có: AD là tia phân giác của \(\widehat{CAE}\)(gt)
nên \(\widehat{EAD}=\widehat{CAD}=\dfrac{\widehat{EAC}}{2}=\dfrac{120^0}{2}=60^0\)
Ta có: \(\widehat{EAD}+\widehat{BAD}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{BAD}+60^0=180^0\)
hay \(\widehat{BAD}=120^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia AB, ta có: \(\widehat{BAC}< \widehat{BAD}\left(60^0< 120^0\right)\)
nên tia AC nằm giữa hai tia AB và AD
Ta có: tia AC nằm giữa hai tia AB và AD(cmt)
mà \(\widehat{BAC}=\widehat{DAC}\left(=60^0\right)\)
nên AC là tia phân giác của \(\widehat{BAC}\)(Đpcm)