Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(CH\perp AB\Rightarrow AB\perp\left(CC'H\right)\)
\(\Rightarrow\widehat{CHC'}\) là góc giữa (C'AB) và (ABC) \(\Rightarrow\widehat{CHC'}=30^0\)
\(\Rightarrow CH=C'H.cos30^0=\dfrac{C'H.\sqrt{3}}{2}\)
\(S_{ABC}=\dfrac{1}{2}CH.AB=\dfrac{\sqrt{3}}{2}.\left(\dfrac{1}{2}C'H.AB\right)=\dfrac{\sqrt{3}}{2}S_{C'AB}=6\sqrt{3}\)
Chắc đề đúng là tính \(d\left(A;\left(BCC'B'\right)\right)\)
Gọi E là trung điểm BC \(\Rightarrow AE\perp BC\) (trong tam giác đều trung tuyến đồng thời là đường cao)
\(\Rightarrow AE\perp\left(BCC'B'\right)\)
\(\Rightarrow AE=d\left(A;\left(BCC'B'\right)\right)\)
Ta có: \(AE=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)
\(\Rightarrow d\left(A;\left(BCC'B'\right)\right)=\dfrac{a\sqrt{3}}{2}\)
Tham khảo: