Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc CEM+góc CDM=180 độ
=>CEMD nội tiếp
b: góc EDM=góc ECM
góc FDM=góc FBM=góc ABM
=>góc EDF=góc ACM+góc ABM=60 độ
a/
D và E cùng nhìn MC dưới 1 góc vuông -> CDME là tứ giác nội tiếp
b/
CM tương tự ta cũng có tứ giác BDMF là tứ giác nội tiếp
\(\Rightarrow\widehat{MBF}=\widehat{MDF}\) (góc nt cùng chắn cung MF) (1)
Xét tứ giác nt CDME có
\(\widehat{MCE}=\widehat{MDE}\) (góc nt cùng chắn cung MF) (2)
Từ (1) và (2) \(\Rightarrow\widehat{MBF}+\widehat{MCE}=\widehat{MDF}+\widehat{MDE}=\widehat{EDF}\) (3)
Xét \(\Delta ABC\) có
AB=AC (Hai tiếp tuyến cùng xp từ 1 điểm)
=> \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{xAy}}{2}=\dfrac{180^o-60^o}{2}=60^o\)
Ta có
\(sđ\widehat{ABC}=\dfrac{1}{2}sđ\) cung BC => sđ cung BC = 2.sđ \(\widehat{ABC}=2.60^o=120^o\)
=> sđ cung BM + sđ cung CM = sđ cung BC \(=120^o\)
Ta có
\(sđ\widehat{MBF}=\dfrac{1}{2}sđ\) cung BM (góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{MCE}=\dfrac{1}{2}sđ\) cung CM (góc giữa tiếp tuyến và dây cung)
\(\Rightarrow sđ\widehat{MBF}+sđ\widehat{MCE}=sđ\widehat{EDF}=\dfrac{sđcungBM+sđcungCM}{2}=\dfrac{sđcungBC}{2}=\dfrac{120^0}{2}=60^o\)
c/
Xét tg vuông MBF và tg vuông MCD có
\(sđ\widehat{MBF}=\dfrac{1}{2}sđcungBM\) (góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{MCD}=\dfrac{1}{2}sđcungBM\) (góc nt)
\(\Rightarrow\widehat{MBF}=\widehat{MCD}\) => tg MBF đồng dạng với tg MCD
\(\Rightarrow\dfrac{MF}{MD}=\dfrac{MB}{MC}\)
CM tương tự ta cũng có tg vuông MCE đồng dạng với tg vuông MBD
\(\Rightarrow\dfrac{ME}{MD}=\dfrac{MC}{MB}\Rightarrow\dfrac{MD}{ME}=\dfrac{MB}{MC}\)
\(\Rightarrow\dfrac{MF}{MD}=\dfrac{MD}{ME}\Rightarrow MD^2=ME.MF\left(đpcm\right)\)
a. Vì \(CE\perp MA\)tại E (gt) => \(\widehat{AEC}=90^o\)
\(CD\perp AB\)tại D=> \(\widehat{ADC}=90^o\)
Xét tứ giác AECD có: \(\widehat{AEC}+\widehat{ADC}=90^o+90^o=180^o\)=> AECD là tứ giác nội tiếp đt \((G,R=\frac{AC}{2})\)trong đó G là trung điểm của AC (dhnb)
Cmtt ta có: BFCD là tứ giác nội tiếp đt \((H,R=\frac{BC}{2})\)trong đó H là trung điểm của BC
b.
Vì AECD là tứ giác nội tiếp (cmt) => \(\widehat{EAC}=\widehat{EDC}\)(2 góc nội tiếp cùng chắn \(\widebat{EC}\)) (1)
Do MA là tiếp tuyến của đt(O) (gt)=> \(\widehat{EAC}=\frac{1}{2}sđ\widebat{AC}\)(t/c góc tạo bởi tiếp tuyến và dây cung)
Xét đt (O) có: \(\widehat{ABC}=\widehat{DBC}=\frac{1}{2}sđ\widebat{AC}\)(t/c góc nội tiếp) => \(\widehat{EAC}=\widehat{DBC}\)(2)
vì BFCD là tứ giác nội tiếp => \(\widehat{DBC}=\widehat{DFC}\)(2 góc nội tiếp cùng chắn \(\widebat{DC}\)) (3)
Từ (1),(2) và (3) => \(\widehat{EDC}=\widehat{DFC}\)
do AECD là tứ giác nội tiếp (cmt) => \(\widehat{CED}=\widehat{CAD}\)(2 góc nội tiếp cùng chắn \(\widebat{CD}\)) (4)
Vì MB là tiếp tuyến của đt (O) tại B (gt) => \(\widehat{CBF}=\frac{1}{2}sđ\widebat{BC}\)(T/c góc tạo bởi tiếp tuyến và dây cung)
Xét đt (O) có: \(\widehat{BAC}=\widehat{DAC}=\frac{1}{2}sđ\widebat{BC}\)(t/c góc nội tiếp) => \(\widehat{CBF}=\widehat{DAC}\)(5)
lại có: BFCD là tứ giác nội tiếp (cmt) => \(\widehat{CBF}=\widehat{CDF}\)(2 góc nội tiếp cùng chắn \(\widebat{CF}\)) (6)
Từ (4), (5) và (6) => \(\widehat{CED}=\widehat{CDF}\)
Xét \(\Delta ECD\)và \(\Delta DCF\)có:
\(\widehat{CED}=\widehat{CDF}\)(Cmt)
\(\widehat{EDC}=\widehat{DFC}\)(Cmt)
=> \(\Delta ECD~\Delta DCF\)(g.g) => \(\frac{EC}{DC}=\frac{CD}{CF}\Rightarrow CD^2=CE\times CF\)(Đpcm)
c. Vì I là giao điểm của AC và DE (gt) => \(I\in AC\)
K là giao điểm của BC và DF (gt) => \(K\in BC\)
=> \(\widehat{ICK}=\widehat{ACB}\)
Vì \(\widehat{EDC}=\widehat{ABC}\left(cmt\right)\Rightarrow\widehat{IDC}=\widehat{ABC}\left(do\overline{E,I,D}\Rightarrow\widehat{EDC}=\widehat{IDC}\right)\)
\(\widehat{CDF}=\widehat{BAC}\left(cmt\right)\Rightarrow\widehat{CDK}=\widehat{BAC}\left(do\overline{F,K,D}\Rightarrow\widehat{CDF}=\widehat{CDK}\right)\)
Xét tứ giác ICKD có : \(\widehat{ICK}+\widehat{IDK}=\widehat{ICK}+\widehat{IDC}+\widehat{CDK}=\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\)
(Áp dụng định lý tổng 3 góc trong \(\Delta ABC\)ta có: \(\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\))
=> Tứ giác ICKD là tứ giác nội tiếp (dhnb) => 4 điểm I,C,K,D cùng thuộc 1 đường tròn (đpcm)
d. Vì ICKD là tứ giác nội tiếp (cmt) => \(\widehat{CIK}=\widehat{CDK}\)(2 góc nội tiếp cùng chắn \(\widebat{CK}\))
Lại có: \(\widehat{CDK}=\widehat{BAC}\)(Cmt) => \(\widehat{CIK}=\widehat{BAC}\)mà 2 góc này ở vị tri đồng vị => IK // AB (Dhnb)
Do \(CD\perp AB\left(gt\right)\)=> \(IK\perp CD\)(Quan hệ tính vuông góc và tính song song của 3 đt)
Do ABCD là hình thoi \(\Rightarrow\Delta BCD\) cân tại C
Mà \(C=60^0\Rightarrow\Delta BCD\) đều
Hoàn toàn tương tự, ta có tam giác ABD đều
\(\Rightarrow AB=BC=CD=DA=BD\) (1)
Gọi O là giao điểm 2 đường chéo \(\Rightarrow OA\perp OB\)
Trong tam giác vuông OAB, do E là trung điểm AB nên OE là trung tuyến ứng với cạnh huyền
\(\Rightarrow OE=\dfrac{1}{2}AB\) (2)
Mà O là trung điểm BD (tính chất hình thoi) \(\Rightarrow OB=\dfrac{1}{2}BD\) (3)
(1);(2);(3) \(\Rightarrow OE=OB\)
Hoàn toàn tương tự, ta có:
\(OE=OB=OF=OG=OD=OH\)
\(\Rightarrow\) Các điểm E, B, F, G, D, H cùng thuộc 1 đường tròn tâm O bán kính OB
vẫn dùng cơ ak
Dùng j ạ