Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
b: OA là đường trung trực của BC
=>OA\(\perp\)BC tại D và D là trung điểm của BC
Xét ΔBOA vuông tại B có BD là đường cao
nên \(OD\cdot DA=BD^2\)
c: Sửa đề: \(OD\cdot OA=OG\cdot OH\)
Ta có: ΔOEF cân tại O
mà OG là đường trung tuyến
nên OG\(\perp\)EF tại G
Xét ΔOGA vuông tại G và ΔODH vuông tại D có
\(\widehat{GOA}\) chung
Do đó: ΔOGA đồng dạng với ΔODH
=>\(\dfrac{OG}{OD}=\dfrac{OA}{OH}\)
=>\(OG\cdot OH=OA\cdot OD\)
d: Xét ΔBOA vuông tại B có BD là đường cao
nên \(OD\cdot OA=OB^2=OE^2\)
=>\(OG\cdot OH=OE^2\)
=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
Xét ΔOGE và ΔOEH có
\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
\(\widehat{GOE}\) chung
Do đó: ΔOGE đồng dạng với ΔOEH
=>\(\widehat{OGE}=\widehat{OEH}=90^0\)
=>EH là tiếp tuyến của (O)
a: Xét tứ giácc ABOC có
góc OBA+góc OCA=180 độ
nen ABOC là tứ giác nội tiếp
b: Xét ΔCAO vuông tại C và ΔCDE vuông tại C có
góc CAO=góc CDE
Do đó: ΔCAO đồng dạng vơi ΔCDE
=>CA/CD=CO/CE
=>CA/CO=CD/CE
Xét ΔCAD và ΔCOE có
CA/CO=CD/CE
góc ACD=góc OCE
Do đo: ΔCAD đồng dạng với ΔCOE
Bổ sung đề; OA cắt BC tại D
a: Ta có: ΔOBA vuông tại B
=>B nằm trên đường tròn đường kính OA(1)
Ta có: ΔOCA vuông tại C
=>C nằm trên đường tròn đường kính OA(2)
Từ (1) và (2) suy ra B,C,O,A cùng thuộc đường tròn đường kính OA
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(3)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(4)
Từ (3) và (4) suy ra OA là đường trung trực của BC
b: OA là đường trung trực của BC
Do đó: OA\(\perp\)BC tại D và D là trung điểm của BC
Xét ΔOBA vuông tại B có BD là đường cao
nên \(OD\cdot OA=OB^2=R^2\)
Ta có: ΔOEF cân tại O
mà OG là đường trung tuyến
nên OG\(\perp\)EF tại G
Xét ΔOGA vuông tại G và ΔODH vuông tại D có
góc GOA chung
Do đó: ΔOGA đồng dạng với ΔODH
=>\(\dfrac{OG}{OD}=\dfrac{OA}{OH}\)
=>\(OG\cdot OH=OA\cdot OD\)
c: Ta có: \(OG\cdot OH=OA\cdot OD\)
\(OA\cdot OD=R^2\)
Do đó: \(OG\cdot OH=R^2=OE^2\)
=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
Xét ΔOGE và ΔOEH có
\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
\(\widehat{GOE}\) chung
Do đó: ΔOGE đồng dạng với ΔOEH
=>\(\widehat{OGE}=\widehat{OEH}\)
=>\(\widehat{OEH}=90^0\)
=>HE là tiếp tuyến của (O)
Hình khó nhìn quá bạn vẽ lại cho mình với