K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

Đặt f(x) =  x 2 , x ∈ R

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị của hai hình đó ta có:

f(0,5) < g(0,5);

f(1) = g(1) = 1;

f(3/2) > g(3/2), f(2) > g(2);

f(3) > g(3), f(4) > g(4).

18 tháng 10 2018

Đặt f(x) =  x 2 , x ∈ R

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị của hai hình đó ta có:

f(0,5) < g(0,5);

f(1) = g(1) = 1;

f(3/2) > g(3/2), f(2) > g(2);

f(3) > g(3), f(4) > g(4).

2 tháng 11 2018

Đáp án C

Cả hai khẳng định đều sai vì thiếu điều kiện hàm số liên tục.

 

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

22 tháng 5 2017

Chọn A

Do y = loga⁡x và y = logb⁡x là hai hàm đồng biến nên a > 1; b > 1

Do y = logc⁡x nghịch biến nên c < 1 . Vậy c bé nhất.

Mặt khác: Lấy y = m, khi đó tồn tại x1; x2 > 0 để

8 tháng 8 2017

Do y = loga⁡x và y = logb⁡x là hai hàm dồng biến nên a > 1; b > 1

Do y = logc⁡x nghịch biến nên c < 1. Vậy c bé nhất.

Mặt khác: Lấy y = m, khi đó tồn tại x1, x2 > 0 để

Chọn A

4 tháng 1 2017

Do y = ax và y = bx là hai hàm đồng biến nên a > 1; b > 1.

Do y = cx nghịch biến nên c < 1. Vậy c bé nhất.

Mặt khác: Lấy x = m, khi đó tồn tại y1; y2 > 0 để

Dễ thấy y1 < y2 ⇒ am < bm ⇒ a < b

Vậy b > a > c.

Chọn A

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

20 tháng 1 2019

Chọn A

Đk để hàm số xác định là: . Vậy mệnh đề đúng.

Do hàm số có tập xác định nên không tồn tại do đó đồ thị hàm số này không có đường tiệm cận ngang. Vậy mệnh đề sai.

Do nên đồ thị hàm số có đường tiệm cận đứng là . Vậy đúng.

Ta có

Do bị đổi dấu qua nên hàm số có một cực trị. Vậy mệnh đề đúng.

 

Do đó số mệnh đề đúng là .